Hydrogen Plant Manufacturer Archives - Hydrogengentech

hydrogen-pipeline-hydrogen-fuel-tank-with-wind-turbines-farm-green-power-environmental-protection-concept.webp

February 17, 2025by Digital Team HGPL0

Hydrogen is rapidly emerging as a key player in the clean energy transition, powering industries, transportation, and even homes. But not all hydrogen is created equal. The two most talked-about types—green hydrogen and blue hydrogen—offer distinct advantages and challenges.

If your business is considering hydrogen as a fuel or industrial input, understanding the differences between green hydrogen and blue hydrogen is crucial. Which one aligns better with your sustainability goals, cost constraints, and operational needs? Let’s explore!

 

Understanding Hydrogen Colors: What Do They Mean?

Before diving into the debate, here’s a quick breakdown of hydrogen types:

  • Green Hydrogen 🌱 → Produced through electrolysis using renewable energy (solar, wind, hydro) with zero carbon emissions.
  • Blue Hydrogen 🔵 → Produced from natural gas using steam methane reforming (SMR) or autothermal reforming (ATR), with carbon capture and storage (CCS) to reduce emissions.
  • Gray Hydrogen ⚫ → Produced from fossil fuels without carbon capture, leading to high CO₂ emissions.
  • Brown/Black Hydrogen 🏭 → Derived from coal, generating the highest emissions.

Among these, green and blue hydrogen are the two most viable options for industries looking to balance cost, sustainability, and energy security.

 

Green Hydrogen: The Carbon-Free Solution

✅ How It’s Produced

Green hydrogen is made using electrolysis, where water (H₂O) is split into hydrogen (H₂) and oxygen (O₂) using electricity from renewable sources. Since no fossil fuels are involved, the process produces zero greenhouse gas emissions.

🌍 Advantages of Green Hydrogen

  1. 100% Clean Energy – No CO₂ emissions, making it ideal for carbon-neutral and net-zero goals.
  2. Supports Renewable Energy Growth – Can store excess power from solar and wind farms.
  3. Long-Term Sustainability – Future-proof as industries shift toward cleaner energy.

⚡ Challenges of Green Hydrogen

  1. Higher Costs – Electrolysis technology and renewable energy sources are currently more expensive than fossil fuels.
  2. Energy-Intensive Process – Requires significant electricity to produce hydrogen efficiently.
  3. Infrastructure Limitations – Electrolyzer production and hydrogen distribution networks need expansion.

Best for Industries Focused on:

100% sustainability goals
Renewable energy integration
Long-term hydrogen storage for grid balancing

Industries Using Green Hydrogen:

  • Renewable energy storage
  • Transportation (hydrogen fuel cells for EVs, aviation, and shipping)
  • Green steel and cement manufacturing
  • Chemical and fertilizer production

 

Blue Hydrogen: The Low-Carbon Alternative

✅ How It’s Produced

Blue hydrogen is produced through steam methane reforming (SMR) or autothermal reforming (ATR), extracting hydrogen from natural gas. However, the carbon emissions generated during production are captured and stored (CCS), making it a lower-emission option than gray hydrogen.

🌍 Advantages of Blue Hydrogen

  1. Lower Cost than Green Hydrogen – Uses existing natural gas infrastructure, reducing initial investments.
  2. Scalable & Widely Available – Natural gas supply chains are well-established worldwide.
  3. Lower Carbon Footprint – While not emission-free, CCS technology captures up to 90% of CO₂ emissions.

⚡ Challenges of Blue Hydrogen

  1. Not 100% Carbon-Free – Some CO₂ leakage and methane emissions still occur.
  2. Dependence on Fossil Fuels – Relies on natural gas, which fluctuates in price and supply.
  3. Carbon Capture Costs – Storing and managing captured CO₂ requires additional investment.

Best for Industries Focused on:

Lowering emissions while keeping costs manageable
Transitioning to cleaner energy without major infrastructure changes
Scaling up hydrogen use with existing natural gas networks

Industries Using Blue Hydrogen:

  • Oil refining & petrochemicals
  • Power generation
  • Heavy industry (steel, glass, cement)
  • Hydrogen fueling infrastructure

 

Green vs. Blue Hydrogen: Side-by-Side Comparison

Feature Green Hydrogen 🌱 Blue Hydrogen 🔵
Carbon Emissions Zero emissions ✅ Low emissions (with CCS) 🔵
Production Method Electrolysis with renewable energy SMR/ATR with carbon capture
Cost Higher (due to renewables & electrolyzers) Lower (uses existing gas infrastructure)
Scalability Limited but growing 🚀 More scalable with existing supply chains
Infrastructure Requires new electrolyzers & hydrogen transport Uses current natural gas infrastructure
Best for 100% clean energy goals, long-term sustainability Industries needing a balance of cost & lower emissions

 

Which One is the Best Choice for Your Business?

The answer depends on your industry, sustainability targets, and cost considerations:

Choose Green Hydrogen if:

  • Your business is committed to 100% clean energy and net-zero targets.
  • You have access to affordable renewable energy sources.
  • Long-term sustainability is a priority over short-term costs.

Choose Blue Hydrogen if:

  • You need a cost-effective transition to lower-carbon hydrogen.
  • Your industry relies on existing natural gas infrastructure.
  • You require scalable hydrogen production without drastic changes to operations.

 

Final Thoughts: The Future of Hydrogen is Green

While blue hydrogen is a crucial stepping stone for industries moving toward decarbonization, green hydrogen is the ultimate goal for a fully sustainable future. As renewable energy costs decrease and electrolysis technology improves, green hydrogen will become more accessible and cost-competitive.

Businesses investing in hydrogen today will gain a competitive edge in the transition to cleaner energy solutions. Whether you choose blue hydrogen as a bridge or go all-in on green hydrogen, the shift toward a hydrogen-powered economy is already happening.

💡 Looking for hydrogen solutions tailored to your business? Contact Hydrogen Gentech Private Limited (HGPL) to explore the best on-site hydrogen generation options for your industry!

 


freepik__expand__10977.webp

February 7, 2025by Digital Team HGPL0

Hydrogen is at the forefront of industrial innovation, playing a crucial role in energy production, manufacturing, transportation, and environmental sustainability. Traditionally, industries have relied on bulk hydrogen deliveries, but on-site hydrogen generation is emerging as a game-changing solution. By producing hydrogen directly at the point of use, companies can reduce costs, enhance efficiency, and improve sustainability.

In this blog, we will explore how on-site hydrogen generation can transform various industries and why businesses should consider making the switch.

 

What is On-Site Hydrogen Generation?

On-site hydrogen generation involves producing hydrogen directly at the facility where it is needed, using advanced technologies such as:

  • Electrolysis – Uses electricity to split water (H₂O) into hydrogen (H₂) and oxygen (O₂). When powered by renewable energy, this process produces green hydrogen, making it a 100% clean energy solution.
  • Steam Methane Reforming (SMR) with Carbon Capture – A process that extracts hydrogen from natural gas while capturing CO₂ emissions to minimize environmental impact.
  • Methanol Reforming – Converts methanol and water into hydrogen, offering a more flexible solution for certain applications.

Each method has its benefits, but the choice depends on industry requirements, cost considerations, and sustainability goals.

 

Benefits of On-Site Hydrogen Generation

✅ Cost Savings & Supply Independence

Industries relying on delivered hydrogen face challenges such as fluctuating fuel prices, transportation costs, and supply chain disruptions. On-site generation eliminates these concerns, offering:

  • Lower operational costs by avoiding delivery fees and storage expenses.
  • Consistent supply without dependency on third-party suppliers.
  • Long-term savings, especially when integrating renewable energy sources like solar or wind power.

♻ Environmental Sustainability

Switching to on-site hydrogen generation can significantly reduce carbon footprints, particularly with green hydrogen production. Benefits include:

  • Elimination of emissions from transportation and logistics.
  • Support for decarbonization goals, helping industries meet environmental regulations.
  • Integration with renewable energy sources for a fully sustainable production cycle.

🔧 Improved Process Efficiency & Safety

On-site hydrogen generation enhances operational efficiency by:

  • Providing a continuous and reliable hydrogen supply, reducing downtime.
  • Minimizing storage risks, as large hydrogen cylinders and liquid storage tanks become unnecessary.
  • Offering better control over purity levels, ensuring hydrogen meets industry standards.

 

Industries That Benefit from On-Site Hydrogen Generation

  1. Manufacturing & Metal Processing

Hydrogen is widely used in annealing, welding, and metal processing. On-site production ensures a high-purity, uninterrupted hydrogen supply, leading to improved process efficiency and cost reductions.

  1. Oil & Gas Refining

Refineries use hydrogen for hydrocracking and desulfurization. On-site generation helps refineries reduce operational costs and improve compliance with low-sulfur fuel regulations.

  1. Chemical & Pharmaceutical Industries

Many chemical processes, such as ammonia production and hydrogenation reactions, depend on a steady hydrogen supply. On-site generation ensures consistency and eliminates risks associated with bulk delivery.

  1. Food & Beverage Industry

Hydrogen is used in hydrogenation processes to enhance the shelf life and quality of edible oils and fats. With on-site generation, food manufacturers can ensure purity and reduce supply costs.

  1. Electronics & Semiconductor Manufacturing

Semiconductor fabrication requires ultra-high-purity hydrogen for cleaning and processing. On-site production provides controlled purity levels, crucial for manufacturing efficiency.

  1. Renewable Energy & Hydrogen Fueling Stations

As hydrogen fuel cell technology gains traction, on-site hydrogen generation is critical for refueling stations, ensuring a sustainable and cost-effective fuel supply.

 

Is On-Site Hydrogen Generation Right for Your Business?

If your industry relies on hydrogen, transitioning to on-site generation can bring substantial financial and operational benefits. Key considerations include:

  • Hydrogen Demand – Businesses with continuous or high-volume hydrogen requirements benefit the most.
  • Sustainability Goals – If reducing carbon emissions is a priority, green hydrogen from electrolysis is a viable solution.
  • Cost Analysis – Comparing hydrogen purchase costs with on-site production costs can highlight long-term savings.

 

 

On-site hydrogen generation is transforming industries by offering cost efficiency, sustainability, and operational reliability. Whether you are in manufacturing, refining, pharmaceuticals, or renewable energy, this technology can enhance productivity while reducing environmental impact.

As the world moves toward cleaner energy solutions, businesses adopting on-site hydrogen generation will gain a competitive edge and contribute to a more sustainable future.

Looking to implement on-site hydrogen generation for your business? Contact Hydrogen Gentech Private Limited (HGPL) today to explore the best solutions for your industry.

 


H2-001-png.webp

December 31, 2024by Digital Team HGPL0

The year 2024 has been a transformative one for green energy, particularly green hydrogen. As the global community intensifies its efforts to combat climate change, advancements in renewable energy infrastructure, policy support, and technological innovation have taken center stage. However, the year also brought challenges, highlighting the need for continued collaboration and investment. Here’s a comprehensive look at the major developments in 2024, blending data, insights, and narratives to engage and inform.

 

  1. A Record-Breaking Year for Renewable Energy

2024 saw unparalleled growth in renewable energy infrastructure:

  • Wind Energy:
    • The UK reached a remarkable milestone with wind power generating a record 22.5 GW, underscoring the nation’s commitment to phasing out fossil fuels.
  • Solar Energy:
    • Solar power solidified its position as the world’s most cost-effective energy source, with countries like India and China leading large-scale installations.
  • Battery Storage Expansion:
    • In the U.S., battery storage capacity surged by 71%, reaching 24 GWh, enabling greater integration of renewable energy into the grid. Globally, the market saw a 47% rise in installations compared to 2023.

 

  1. Green Hydrogen: A Game-Changer in the Energy Transition

Green hydrogen emerged as a beacon of hope in 2024, driving decarbonization across industries.

  • Production Growth:
    • Global green hydrogen production rose by over 150%, fueled by significant projects such as:
      • Australia’s HyEnergy Project, which achieved 100 MW electrolyzer capacity in its first phase.
      • Europe’s REPowerEU initiative, targeting 20 million tonnes of green hydrogen annually by 2030.
  • Policy Boosts:
    • The U.S. Department of Energy allocated up to $2.2 billion to accelerate clean hydrogen development, focusing on the Gulf Coast and Midwest regions.
    • India announced a ₹19,744 crore incentive scheme to support green hydrogen production, aligning with its ambitious goal of producing 5 million tonnes by 2030.
  • Corporate Investments:
    • Companies like BP and Reliance Industries committed billions to green hydrogen projects. BP’s Lingen Green Hydrogen Plant in Germany is expected to produce 120,000 tonnes annually.

 

  1. Challenges and Market Dynamics

While progress was undeniable, challenges remained:

  • High Costs:
    • Green hydrogen production costs ranged from $3 to $6 per kilogram, compared to $1–$2 for grey hydrogen, leading to the cancellation of several projects, particularly in Europe.
    • Achieving cost parity with fossil fuels remains a critical hurdle.
  • Infrastructure Gaps:
    • The lack of a global hydrogen distribution network limited its adoption, requiring further investment in pipelines and storage systems.

 

  1. Innovations Driving the Future

Technological breakthroughs played a vital role in making green energy and hydrogen more viable:

  • Electrolyzer Efficiency:
    • Advanced electrolyzers achieved a 15% improvement in efficiency, reducing energy consumption during hydrogen production.
  • Perovskite Solar Cells:
    • Researchers achieved efficiencies of 28.5% in perovskite-based solar cells, signaling a potential leap beyond traditional silicon panels.
  • AI in Energy Grids:
    • Artificial Intelligence optimized energy production and distribution, particularly in balancing intermittent renewable sources like wind and solar.

 

  1. The Bigger Picture: Green Hydrogen’s Global Impact
  • Decarbonization:
    • Green hydrogen has the potential to cut global CO2 emissions by 6 gigatonnes annually by 2050, contributing significantly to climate goals.
  • Employment Opportunities:
    • The sector is expected to create over 700,000 jobs globally by 2030, offering a dual benefit of sustainability and economic growth.

 

  1. Policy and Public Ownership: Shaping the Future

Governments played a pivotal role in 2024:

  • United Kingdom:
    • Launched Great British Energy, a publicly owned company to invest in renewables and manage clean energy projects.
  • European Union:
    • Introduced the Renewable Hydrogen Directive, requiring 42% of industrial hydrogen use to come from renewable sources by 2030.

 

A Year of Progress and Promise

The developments in 2024 reflect both the immense potential of green energy and the challenges ahead. Green hydrogen, in particular, emerged as a key player in the global energy transition. However, high costs, infrastructure hurdles, and the need for consistent policy support require continued focus and innovation.

As the world accelerates toward a low-carbon future, collaboration between governments, industries, and communities will be critical. By addressing challenges and capitalizing on technological advancements, green energy and green hydrogen can lead the way in creating a sustainable and prosperous future for all.

 

Key Numbers from 2024 at a Glance:

  • Global Energy Transition Investment: $1.7 trillion
  • Green Hydrogen Production Growth: +150%
  • U.S. Battery Storage Capacity: 24 GWh (+71%)
  • Potential CO2 Reduction: 6 gigatonnes annually by 2050
  • Employment Opportunities in Green Hydrogen: 700,000 by 2030

The journey is challenging, but the path is clear—green energy is not just a vision; it’s becoming reality. Let 2024 serve as a testament to what the world can achieve together.


WhatsApp-Image-2024-07-23-at-4.21.19-PM-1-jpeg.webp

India’s energy landscape is undergoing a transformative shift towards sustainability, largely driven by the pioneering efforts of the Adani Group. With an ambitious plan to invest $100 billion over the next decade, Adani is setting a new benchmark in the renewable energy sector. This monumental investment underscores the group’s commitment to green energy and, through its visionary leadership, catalyzes other companies, such as Hydrogen Gentech Private Limited (HGPL), to contribute to India’s sustainable future.

 

Adani Group’s Green Energy Vision
Adani Green Energy Ltd. (AGEL) is at the forefront of the Adani Group’s renewable energy initiatives. AGEL’s comprehensive approach, which spans from expanding solar and wind power capacities to developing green hydrogen solutions and integrating advanced energy storage technologies, truly embodies the depth and breadth of Adani’s green energy vision.

1. Expanding Renewable Capacity: AGEL is one of the largest solar power developers globally. It aims to scale up its renewable energy portfolio to 45 GW by 2030, including extensive solar and wind energy projects across India.
2. Green Hydrogen Revolution: Much of Adani’s investment is earmarked for building a robust green hydrogen value chain. The group plans to commercialize 3 million metric tons of green hydrogen annually, leveraging their extensive experience in large-scale renewables and integrated manufacturing capabilities.
3. Technological Innovation: Adani’s forward-thinking approach is evident in its investments in cutting-edge technologies to enhance energy efficiency and storage. The establishment of giga factories for manufacturing solar panels, wind turbines, and hydrogen electrolyzers is a strategic move to drive down costs and promote the widespread adoption of renewable energy.

 

Inspiring Other Companies: Hydrogen Gentech Private Limited (HGPL)
Adani’s ambitious initiatives serve as a powerful inspiration for other companies in the renewable energy sector. HGPL, for instance, is taking cues from Adani’s leadership and investing in green hydrogen technologies. Here’s how Adani’s example is inspiring HGPL and others:

Focus on Innovation: Hydrogen Gentech Private Limited (HGPL) is developing efficient hydrogen production methods and storage solutions to make hydrogen energy more accessible and cost-effective. By following Adani’s lead, HGPL aims to make hydrogen energy more accessible and cost-effective.

Collaborative Ecosystem: Adani’s comprehensive approach to sustainability encourages other companies to collaborate and innovate. HGPL is leveraging this collaborative spirit to build partnerships that enhance its technological capabilities and market reach.

Economic and Environmental Impact: Adani’s green energy initiatives demonstrate that sustainability can complement economic growth. This dual benefit motivates Hydrogen Gentech Private Limited (HGPL) to invest in renewable energy projects that reduce carbon emissions while creating jobs and driving economic development.

Setting High Standards: Indian hydrogen companies are collectively achieving significant milestones in renewable energy, setting high standards, and fostering a competitive environment. These companies are developing advanced hydrogen technologies, integrating renewable energy sources, and enhancing energy efficiency. They reduce emissions and reliance on fossil fuels by promoting hydrogen use in industrial processes and transportation. Through collaborative projects and public awareness initiatives, these companies are accelerating the adoption of hydrogen solutions, driving India’s transition to a sustainable future, and making substantial contributions to environmental sustainability.

 

Adani Group’s Green Energy Commitment

Massive Renewable Energy Expansion: AGEL aims to expand its renewable energy portfolio to 45 GW by 2030. This includes large-scale solar and wind projects that are strategically located across India. Adani’s focus on hybrid renewable power generation further enhances the efficiency and reliability of its energy supply.

Investment in Green Hydrogen: A significant portion of Adani’s $100 billion investment is allocated to developing a green hydrogen value chain. Adani is positioning itself at the forefront of this emerging market by commercializing green hydrogen production. Green hydrogen is essential for reducing carbon emissions in hard-to-abate sectors like transportation and heavy industry.

Technological Innovation: Adani is building three giga factories in India to manufacture solar panels, wind turbines, and hydrogen electrolyzers. These factories will reduce costs and ensure a steady supply of critical components for renewable energy projects.

 

Government Incentives for Green Energy
The Indian government is also playing a crucial role in promoting green energy through various initiatives:
1. National Solar Mission: This initiative aims to establish India as a global leader in solar energy by increasing solar power production.
2. Subsidies and Tax Benefits: The government provides subsidies for installing solar panels and other renewable energy systems. Companies investing in green energy also receive tax benefits.
3. Renewable Purchase Obligations (RPOs): Power distribution companies must purchase a certain percentage of their power from renewable sources.
4. Financial Support: The government offers financial incentives and support for research and development in renewable energy technologies.
5. International Collaborations: India is collaborating with other countries to share knowledge and technology in the field of renewable energy

 

Conclusion
The Adani Group’s ambitious green energy initiatives are setting a new standard for sustainability in India. By investing heavily in renewable energy, green hydrogen, and technological innovation, Adani is paving the way for a greener future. We at Hydrogen Gentech Private Limited (HGPL), inspired by Adani’s leadership, are also crucial in advancing green energy solutions. Together, these efforts are driving India towards a sustainable and prosperous future.


WhatsApp-Image-2024-07-18-at-4.16.56-PM-jpeg.webp

Hydrogen Gentech Private Limited (HGPL) is pleased to announce that it has been selected by Coastal Industrial Gas P Limited for a significant project in Andhra Pradesh, India. HGPL will be responsible for the Design Engineering, Manufacturing, Supply, Erection Supervision, and Commissioning of a 100 Nm3/Hr Hydrogen Generation and Purification Plant.

 

HGPL’s scope of work for this project encompasses several critical phases:

  1. Design Engineering: HGPL’s experienced engineering team will design the hydrogen generation and purification plant to meet the client’s specific requirements and industry standards. This includes detailed planning and schematics to ensure efficient operation and safety.
  2. Manufacturing: The manufacturing process will involve the production of high-quality components and systems needed for the plant. HGPL’s state-of-the-art manufacturing facilities are equipped to handle the complexities of hydrogen generation and purification equipment.
  3. Supply Completed: All necessary equipment and materials will be supplied to the project site. HGPL will ensure that everything is delivered on time and meets the stringent quality standards expected by the client.
  4. Erection Supervision: HGPL’s team of experts will supervise the erection of the plant, ensuring that all components are installed correctly and efficiently. This phase is crucial for the overall success of the project, as proper installation is key to operational reliability.
  5. Commissioning: Once the plant is erected, HGPL will oversee the commissioning process, which includes rigorous testing and validation to ensure the plant operates as intended. This phase ensures that the plant is ready for full-scale hydrogen generation and purification.

 

About Coastal Industrial Gas P Limited
Coastal Industrial Gas P Limited is a leading industrial gas company based in Andhra Pradesh, India. The company is known for its commitment to innovation and excellence in the field of industrial gases. This new hydrogen generation and purification plant will enhance their capabilities and support their mission to provide high-quality gas solutions to their clients.

 

About HGPL
Hydrogen Gentech Private Limited (HGPL) is a renowned name in the hydrogen generation industry, known for its expertise in designing, manufacturing, and commissioning state-of-the-art hydrogen plants. HGPL’s commitment to innovation, quality, and customer satisfaction has positioned it as a preferred partner for leading industrial gas companies.

 

Conclusion
HGPL is honoured to partner with Coastal Industrial Gas P Limited for this prestigious project. The successful completion of this hydrogen generation and purification plant will mark another milestone in HGPL’s journey of delivering cutting-edge hydrogen solutions. We look forward to contributing to Coastal Industrial Gas P Limited’s growth and success with our advanced technology and unparalleled expertise.

Stay tuned for more updates on the progress of this exciting project!

For more information about HGPL and its services, please visit our website or contact our sales team.


HGPL_90_Blog.jpg

January 19, 2024by Digital Team HGPL0

Hydrogen Gentech Private Limited (HGPL) has achieved a significant milestone by successfully commissioning a state-of-the-art Hydrogen Generation & Purification Plant based on Water Electrolysis technology at Divis Laboratories Limited, India. Divis Laboratories Limited, one of India’s leading pharmaceutical companies, boasts the world’s largest Active Pharmaceuticals Ingredients (API) manufacturing facility, equipped with advanced manufacturing and in-house analytical facilities. Notably, the company holds a substantial global market share, ranging from 60% to 85%, in generic naproxen, dextromethorphan, and gabapentin APIs, with a production process that is backward integrated.

HGPL’s contribution to this project involved a comprehensive scope of work, including design, engineering, manufacturing/supply, erection supervision, and commissioning. The Hydrogen plant facility consists of two independent streams, jointly capable of generating an impressive 3600 Nm3/day of high-purity Hydrogen. This high-purity hydrogen is a valuable resource utilized across diverse applications in the pharmaceutical, steel, glass, and chemical industries.

The heart of the facility is the Stack, which is essentially a series of cells where DC power is applied to initiate an electrolytic reaction at high pressure, effectively splitting water into hydrogen and oxygen. The process then involves the separation of raw hydrogen and oxygen from Lye and moisture, with oxygen being vented out while the hydrogen proceeds to the purification stage. Here, hydrogen is further purified using a deoxo reactor and subjected to a drying process, resulting in the production of high-purity dry hydrogen.

The facility’s operation is meticulously controlled by a PLC (Programmable Logic Controller) system, ensuring seamless and automatic operation while adhering to international safety standards. HGPL’s expertise in designing, engineering, manufacturing, supplying, and successfully commissioning water electrolysis technology-based Hydrogen plants is a testament to their technical capabilities.

Hydrogen Gentech Private Limited (HGPL) is a renowned international EPC (Engineering, Procurement, and Construction) company specializing in technology-based Hydrogen Generation plants. Operating out of India, HGPL is dedicated to Green Hydrogen Generation, Purification, Recovery, Storage solutions, and their applications across various industries, including renewable energy, fuel, and mobility sectors. With a strong commitment to advancing hydrogen technology, HGPL continues to make significant strides in the field of hydrogen generation and its diverse applications.


HGPL_Blog_181.jpg

September 30, 2023by Digital Team HGPL0

Introduction

ACME Group, a well-known diversified renewable energy company, has set its sights on revolutionizing the hydrogen industry in India. In a significant development, the company has signed an agreement with Tata Steel Special Economic Zone Limited (TSSEZL) to establish a 1.3 million tonnes per annum (MTPA) green ammonia production facility at the Gopalpur Industrial Park (GIP) in Odisha. This ambitious project is poised to become the largest single-location green hydrogen and its derivatives manufacturing facility in the country.

The Partnership with TSSEZL and IHI Corporation

ACME Group’s partnership with TSSEZL, a subsidiary of Tata Steel, is a strategic move that will provide the necessary infrastructure and support for the green ammonia project. The agreement was signed between Manikanta Naik, Managing Director of TSSEZL, and Sandeep Kashyap, Chief Operating Officer of ACME Group, in the presence of Hemant Sharma, Principal Secretary of Industries Department and Chairman of IDCO & IPICOL, Government of Odisha.

As part of this project, ACME Group plans to collaborate with Japan’s IHI Corporation, a global leader in engineering, procurement, and construction (EPC) services. The expertise of IHI Corporation in the hydrogen sector will play a crucial role in ensuring the success of the green ammonia production facility. This partnership will further strengthen the ties between India and Japan in the field of clean energy.

The Green Ammonia Production Facility

ACME Group’s green ammonia production facility at GIP will have a capacity of nearly 1.3 MTPA. The production of green ammonia will be based on the utilization of green hydrogen, which will be produced using renewable power sources. This approach ensures that the entire production process is environmentally friendly and aligns with the principles of sustainable development.

The Gopalpur Industrial Park, located in Ganjam District of Odisha, provides a strategic advantage for this project. The existing port facilities at Gopalpur will enable the export of the green ammonia to both Western and Eastern markets. This will position ACME Group as a key player in the global green hydrogen and ammonia market, offering competitive prices and contributing to India’s vision of becoming a global hub for green hydrogen and its derivatives.

Government Support and the Make in India Initiative

ACME Group’s green hydrogen and green ammonia project has received significant support from the Government of Odisha. The Hon’ble Chief Minister of Odisha, Shri Naveen Patnaik, and the Department of Industries, Govt of Odisha, have played instrumental roles in extending their support to this project. The proactive approach of the state government and its commitment to green energy have created a conducive environment for the establishment of such a groundbreaking facility.

The project also aligns with the Make in India initiative, spearheaded by the Hon’ble Union Minister for Power, New and Renewable Energy, Shri R K Singh, and the Ministry of New and Renewable Energy. This initiative aims to promote domestic manufacturing and position India as a global manufacturing hub. ACME Group’s green hydrogen and green ammonia project will contribute significantly to this vision by offering Make in India products to both domestic and international markets.

Odisha’s Vision for Green Hydrogen and Green Ammonia

The Government of Odisha envisions the state as a leader in the green fuel economy, with a particular focus on green hydrogen and green ammonia. Hemant Sharma, Principal Secretary of Industries Department and Chairman of IDCO & IPICOL, Government of Odisha, expressed this vision and reaffirmed the state’s commitment to sustainable and prosperous development. Odisha’s progressive policies, attractive incentives, and industry-friendly environment have positioned it as an ideal destination for investments in the green energy sector.

The Emerging Manufacturing Hub at Gopalpur Industrial Park

Tata Steel Special Economic Zone Limited’s Gopalpur Industrial Park (GIP) has emerged as a preferred investment destination in a short span of time. With plug-and-play infrastructure, multi-modal logistics connectivity, ready environmental clearance, and clear land titles, GIP offers a conducive environment for businesses to thrive. The industrial park has already attracted significant investments, amounting to around Rs. 4,000 crore, and is poised for further growth with ACME Group’s green ammonia production facility.

Conclusion

ACME Group’s ambitious plan to establish a 1.3 MTPA green ammonia production facility in Odisha marks a significant milestone in India’s journey towards a sustainable and green future. This project, in partnership with TSSEZL and IHI Corporation, will not only position ACME Group as a key player in the green hydrogen and ammonia market but also contribute to India’s goal of becoming a global hub for green hydrogen and its derivatives.

With the support of the Government of Odisha and its commitment to green energy, this project will pave the way for a green fuel revolution in India. The establishment of the green ammonia production facility at Gopalpur Industrial Park will create new opportunities for employment, boost the economy, and enhance India’s standing in the global clean energy landscape. ACME Group’s vision and efforts reflect their commitment to sustainable development and a cleaner, greener future for all.


HGPL_Blog_03.jpg

August 13, 2023by Digital Team HGPL0

JSW Energy, a subsidiary of the Indian conglomerate JSW, is on track to commission what could potentially be India’s largest green hydrogen plant within the next 18 to 24 months. The facility, located in the northern state of Rajasthan, will utilize 25MW of renewable electricity to produce an annual volume of 3,800 tonnes of hydrogen. Although the electrolyser size is expected to be around 12MW, it will still be the largest in India upon commencement of operations.

JSW Energy’s CEO, Prashant Jain, reported that the company has already identified the site for the plant and is in the final stages of obtaining necessary incentives and approvals from the government of Rajasthan. The project is slated to be commissioned by March 2025, and discussions and negotiations for the machinery and other aspects of the plant are ongoing.

JSW Steel, one of India’s major players in the steel industry, has agreed to procure the hydrogen produced by the plant for use in its Vijayanagar steelworks. Located in the southern state of Karnataka, the Vijayanagar steel plant is one of the world’s largest, boasting a production capacity of 12 million tonnes. The green hydrogen will play a pivotal role in reducing carbon emissions and contribute to JSW Steel’s sustainability efforts.

JSW is actively exploring green hydrogen as a key component in its strategy to actively reduce carbon emissions. The adoption of new hydrogen technologies, such as carbon capture, is a vital part of their commitment to sustainability and a cleaner future. The company is also investing in electric arc furnaces, sourcing renewable electricity, and focusing on enhancing energy and process efficiencies. The long-term goal is to substantially reduce thermal coal usage by 2030, inching closer to a zero-emission thermal coal operation.

The iron and steel industry in India currently accounts for a significant portion of greenhouse gas emissions, releasing approximately 320 million tonnes of CO2 in 2022. To address this challenge, the Indian government has initiated steps towards green steel production, with plans to tender 4.5 billion rupees ($55 million) for pilot green steel plants. Additionally, discussions are underway to potentially mandate the use of green hydrogen in certain sectors, although no final decision has been made on this policy.

JSW Energy’s commitment to establishing the largest green hydrogen plant in India reflects the growing focus on sustainable practices and the pivotal role that green hydrogen can play in decarbonizing industries. As India seeks to achieve its climate goals and transition towards a greener energy landscape, initiatives like this mark a significant step in the right direction.


HGPL-HYGENCO-Blogs-Banner-2.jpeg

Hydrogen Gentech Private Limited (HGPL), an international technology based company specializing in hydrogen generation plants, has recently secured a noteworthy Engineering, Procurement, and Construction (EPC) contract from Hygenco India. The contract entails the development of a multi-megawatt scale green hydrogen facility in India, which will be owned and operated by Hygenco India. This ground-breaking project aims to significantly reduce carbon emissions by approximately 2,700 metric tons annually.

 

The selection of Hydrogen Gentech Private Limited (HGPL) for this project serves as a testament to the company’s exceptional EPC capabilities, enabling it to actively contribute to the establishment of top-tier, competitive, and cost-efficient green hydrogen facilities on behalf of its esteemed clientele. Company officials expressed their enthusiasm for this opportunity, emphasizing their commitment to delivering high-quality solutions.

Hydrogen Gentech Private Limited (HGPL)’s scope of work encompasses a comprehensive range of tasks, including detailed engineering, procurement, and the supply of the H2 purification unit, storage tanks, and various other equipment. Additionally, the company will be responsible for the erection and construction of the green hydrogen facility.

The significance of adopting green hydrogen, as highlighted in the National Hydrogen Mission document published by the Government of India, Green Hydrogen is deemed crucial for key industries such as steel, fertilizers, and refineries, particularly for a country like India that heavily relies on energy imports. By actively engaging in the development of green hydrogen facilities, Hydrogen Gentech Private Limited (HGPL) aligns itself with the national vision outlined in the government’s mission document.

Hydrogen Gentech Private Limited, headquartered in India, has established itself as a reputed manufacturer and supplier in the field of hydrogen generation plants. The company’s unwavering focus on green hydrogen generation, purification, recovery, storage solutions, and their application in various sectors including, renewable energy, fuel, and mobility solidifies its position as an industry leader.


20230322_211723_0000.png

March 22, 2023by Digital Team HGPL0

Balaji Speciality Chemicals Limited (BSCL), a subsidiary of Balaji Amines Limited, has selected Hydrogen Gentech Private Limited (HGPL) to design, engineer, manufacture, supply, and commission its Hydrogen Purification Unit. The unit will generate high-purity hydrogen using the Methanol cracking process.

To produce high-purity hydrogen, the H2 Purification process technology involves a process study of the composition of mixed gas received at the outlet of the Methanol cracking reactor. This study determines the suitable adsorbents required to remove each impurity via adsorption-based removal and achieve the desired purity level of the hydrogen product.

 

The PSA-based hydrogen purification system will have five towers working cyclically in different phases of H2 generation and tower regeneration stages. Each of the five towers will cyclically work in high purity H2 generation mode while the other four towers operate in different stages of pressurization, depressurization, equalization, and regeneration modes. This design allows for the continuous generation of pure H2.

The adsorber tower for the PSA-based hydrogen purification system will consist of a customized multi-layered, molecular sieve-based adsorption bed system based on the type and quantum of impurities present in the mixed gas streams. The design will ensure that high-purity H2 is generated while minimizing the loss of any H2 during the adsorption process.

HGPL’s scope of work includes detailed engineering, procurement, manufacturing, supply, erection supervision and commissioning, Performance Guarantee Test Run (PGTR), and training. The PGTR will ensure that the unit performs as per the specified parameters and guarantees the performance of the system.

The Hydrogen Purification Unit will be fully automatic, with a control system that includes all safety measures. The PSA-based hydrogen purification technology is a popular route to establish small and medium capacity H2 generation plants, making HGPL a fast-emerging key technology player in India in the field of Hydrogen generation and Purification systems using the Methanol cracking process.

Hydrogen Gentech Private Limited (HGPL) is an international technology-based Hydrogen Generation Plant EPC Company, manufacturer, and supplier based in India. The company has a clear focus on Green Hydrogen Generation, Purification, Recovery & Storage solutions & their applications in Industry, Renewable Energy, Fuel, and Mobility sectors.