Hydrogen Production Archives - Hydrogengentech

HGPL_90_Blog.jpg

January 19, 2024by Digital Team HGPL0

Hydrogen Gentech Private Limited (HGPL) has achieved a significant milestone by successfully commissioning a state-of-the-art Hydrogen Generation & Purification Plant based on Water Electrolysis technology at Divis Laboratories Limited, India. Divis Laboratories Limited, one of India’s leading pharmaceutical companies, boasts the world’s largest Active Pharmaceuticals Ingredients (API) manufacturing facility, equipped with advanced manufacturing and in-house analytical facilities. Notably, the company holds a substantial global market share, ranging from 60% to 85%, in generic naproxen, dextromethorphan, and gabapentin APIs, with a production process that is backward integrated.

HGPL’s contribution to this project involved a comprehensive scope of work, including design, engineering, manufacturing/supply, erection supervision, and commissioning. The Hydrogen plant facility consists of two independent streams, jointly capable of generating an impressive 3600 Nm3/day of high-purity Hydrogen. This high-purity hydrogen is a valuable resource utilized across diverse applications in the pharmaceutical, steel, glass, and chemical industries.

The heart of the facility is the Stack, which is essentially a series of cells where DC power is applied to initiate an electrolytic reaction at high pressure, effectively splitting water into hydrogen and oxygen. The process then involves the separation of raw hydrogen and oxygen from Lye and moisture, with oxygen being vented out while the hydrogen proceeds to the purification stage. Here, hydrogen is further purified using a deoxo reactor and subjected to a drying process, resulting in the production of high-purity dry hydrogen.

The facility’s operation is meticulously controlled by a PLC (Programmable Logic Controller) system, ensuring seamless and automatic operation while adhering to international safety standards. HGPL’s expertise in designing, engineering, manufacturing, supplying, and successfully commissioning water electrolysis technology-based Hydrogen plants is a testament to their technical capabilities.

Hydrogen Gentech Private Limited (HGPL) is a renowned international EPC (Engineering, Procurement, and Construction) company specializing in technology-based Hydrogen Generation plants. Operating out of India, HGPL is dedicated to Green Hydrogen Generation, Purification, Recovery, Storage solutions, and their applications across various industries, including renewable energy, fuel, and mobility sectors. With a strong commitment to advancing hydrogen technology, HGPL continues to make significant strides in the field of hydrogen generation and its diverse applications.


HGPL_Blog_20.jpg

November 29, 2023by Digital Team HGPL0

Introduction
Green hydrogen, a sustainable and carbon-neutral alternative to traditional hydrogen production methods, is gaining traction worldwide. In a move that could accelerate the development of a green hydrogen ecosystem, the government is reportedly considering mandating the consumption of green hydrogen in sectors such as fertilizer and refining industries. This article explores the potential impacts of such mandates, the current cost challenges, and the expected future viability of green hydrogen. Let’s delve into the details.

The Need for Mandated Green Hydrogen Consumption Obligations
While fiscal incentives like those in the Strategic Interventions for Green Hydrogen Transition (SIGHT) program have encouraged investment in green hydrogen, industry experts believe that mandating consumption obligations (GHCO) in sectors already utilizing hydrogen could further stimulate early adoption. A report by Kotak Institutional Equities suggests that compulsory GHCO for sectors currently producing and consuming traditional grey hydrogen could fast-track investments in the green hydrogen value chain.

Accelerating Investments in the Green Hydrogen Chain
To kickstart the transition to green hydrogen, the government is considering firm GHCO announcements for hard-to-abate sectors such as fertilizer and refining industries. These sectors are significant contributors to greenhouse gas emissions and can benefit greatly from adopting green hydrogen. By specifying a minimum share of green hydrogen consumption, the government aims to create bulk demand and scale up green hydrogen production. In the coming years, other industries such as steel, long-range heavy-duty mobility, energy storage, and shipping will also be encouraged to pilot projects using green hydrogen as a replacement for fossil fuels.

Challenges of Cost Competitiveness
One of the main challenges hindering the widespread adoption of green hydrogen is its current cost compared to grey hydrogen produced from natural gas. Refiners, for example, may not find an immediate advantage in switching to green hydrogen due to its higher cost. Green hydrogen is not yet competitive with grey hydrogen for the production of ammonia-based fertilizers either. However, increased reliance on green hydrogen has the potential to reduce natural gas usage in both the fertilizer and refining sectors. Experts believe that beyond 2030, the costs of green hydrogen are expected to become more competitive, thus expediting the transition.

The Role of the National Green Hydrogen Mission (NGHM)
The National Green Hydrogen Mission (NGHM) plays a crucial role in fostering the growth of green hydrogen in India. Although the final version of the NGHM does not specify consumption obligations for each sector, it emphasizes the creation of bulk demand and the scaling up of green hydrogen production. The NGHM proposes pilot projects for sectors like steel, long-range heavy-duty mobility, energy storage, and shipping to identify operational issues, technology readiness, regulations, implementation methodologies, and infrastructure requirements. The findings from these projects will pave the way for future commercial deployment.

The Trajectory and Decision-Making Process
The Empowered Group, led by the Cabinet Secretary, will determine the year-wise trajectory of the minimum share of green hydrogen consumption. This decision-making process will consider factors such as the availability of resources for green hydrogen production, relative costs, and other relevant considerations. By carefully planning the trajectory, the government aims to ensure a smooth transition to green hydrogen while optimizing resources and addressing any challenges that may arise.

Emission Norms and Accreditation
To maintain the integrity of green hydrogen, the government has already notified the green hydrogen standard, which defines emission norms for hydrogen to be classified as green. These standards require emissions throughout the production process to remain below two kg of CO2 equivalent per kg of hydrogen produced as a 12-month average. The Bureau of Energy Efficiency (BEE) has been designated as the nodal authority for accrediting agencies responsible for monitoring, verification, and certification of green hydrogen production projects.

Industry Response and Investments
Despite the slow pace of progress, several corporations, including Reliance, have already embraced green hydrogen and announced investment plans. As the industry gains momentum, investment in green hydrogen is expected to increase significantly. The government’s move towards mandates for green hydrogen consumption is likely to attract further investments, creating new opportunities and driving economic growth.

Conclusion: A Green Hydrogen Revolution
The government’s potential announcement of mandates for green hydrogen consumption in key sectors marks a significant step towards building a sustainable and carbon-neutral future. While cost competitiveness remains a challenge, the transition to green hydrogen offers immense potential for reducing greenhouse gas emissions and curbing reliance on traditional energy sources. As the National Green Hydrogen Mission unfolds, pilot projects and technological advancements will drive the commercial deployment of green hydrogen, unlocking a new era of clean energy.
For more information about the latest developments in the green hydrogen industry and the government’s initiatives, stay tuned to our blog for regular updates.

 

Additional Information: Green Hydrogen is expected to revolutionize the energy sector by providing a sustainable alternative to fossil fuels. With its potential to decarbonize various industries and reduce greenhouse gas emissions, green hydrogen has gained significant attention globally. India’s push towards mandating green hydrogen consumption obligations underscores its commitment to sustainable development and combating climate change. By embracing green hydrogen, India can position itself as a leader in the clean energy transition while reaping the economic benefits of investments and job creation.


HGPL_Blog_042.jpg

November 17, 2023by Digital Team HGPL0

India is on the cusp of a green revolution, and one area that holds great promise is the development of a robust green hydrogen ecosystem. The government is considering introducing mandates for green hydrogen consumption in sectors such as fertilizers and refining, which could accelerate investments and drive early adoption. While green hydrogen is currently more expensive than grey hydrogen, the shift to green hydrogen could significantly reduce carbon emissions and lead to a more sustainable future.

 

The Potential of Green Hydrogen

Green hydrogen, produced through the electrolysis of water using renewable energy sources, has gained significant attention as a clean and sustainable alternative to grey hydrogen. Grey hydrogen is produced from fossil fuels, contributing to greenhouse gas emissions and climate change. By transitioning to green hydrogen, India can reduce its reliance on fossil fuels and make substantial progress towards its climate goals.

 

Compulsory Green Hydrogen Consumption Obligations

To encourage the adoption of green hydrogen, the government is considering introducing compulsory green hydrogen consumption obligations (GHCO) for sectors that are already producing and consuming hydrogen. These obligations would initially target hard-to-abate sectors such as fertilizers and refining, with plans to expand to other industries in the coming years. The introduction of GHCO, in addition to existing fiscal incentives, would create a strong market demand for green hydrogen and drive investments in the entire value chain.

 

Overcoming Cost Challenges

While the cost of green hydrogen is currently higher than grey hydrogen, experts predict that it will become more competitive post-2030. The initial higher cost is attributed to the nascent stage of green hydrogen production and the scale of renewable energy infrastructure required. However, as technology advances and economies of scale are achieved, the cost of green hydrogen is expected to decrease, making it a more viable option for industries.

 

Green Hydrogen Mandate in Hard-to-Abate Sectors

The National Green Hydrogen Mission (NGHM) aims to create a roadmap for the adoption and deployment of green hydrogen across various sectors. While the final version of NGHM does not specify consumption obligations for each sector, it emphasizes the need to create bulk demand and scale up green hydrogen production. To achieve this, the government will specify a minimum share of green hydrogen consumption for consumers as an energy feedstock.

 

Fertilizer and Refining Sectors Leading the Way

The fertilizer and refining sectors are among the largest consumers of hydrogen in India. While they currently rely on grey hydrogen, the introduction of a green hydrogen mandate could significantly reduce their carbon footprint. Pilot projects are already underway to explore the feasibility of using green hydrogen or its derivatives like green ammonia or methanol in these sectors. These projects will help identify operational challenges, technology readiness, and infrastructure requirements, paving the way for future commercial deployment.

 

Steel, Mobility, Energy Storage, and Shipping Sectors

Apart from fertilizers and refining, other sectors such as steel, long-range heavy-duty mobility, energy storage, and shipping also have the potential to benefit from green hydrogen adoption. NGHM proposes pilot projects in these sectors to assess the feasibility of replacing fossil fuels with green hydrogen or its derivatives. These projects will provide valuable insights into technology, regulations, and supply chain requirements, enabling a smooth transition to a greener future.

 

Government Initiatives and Standards

The Indian government has taken significant steps to support the development of a green hydrogen ecosystem. In August this year, it notified the green hydrogen standard, which defines emission norms for hydrogen to be termed green. The standards ensure that the emissions associated with the entire hydrogen production process, from well-to-gate, stay below two kg of CO2 equivalent per kg of hydrogen produced as a 12-month average.

 

Accreditation and Certification

To ensure compliance with the green hydrogen standard, the Bureau of Energy Efficiency (BEE) will accredit agencies for monitoring, verification, and certification of green hydrogen production projects. This accreditation will provide transparency and credibility to the green hydrogen ecosystem, boosting investor confidence and encouraging further investments.

 

Corporate Investments in Green Hydrogen

Leading corporations in India, including Reliance, have already made significant investments in the green hydrogen space. While progress has been relatively slow, experts believe that green hydrogen will be an emerging area for investment. As more companies recognize the environmental and economic benefits of green hydrogen, we can expect to see an increase in investments and collaborations in this sector.

 

Conclusion

India has a unique opportunity to lead the way in the global shift towards a green hydrogen economy. By introducing compulsory green hydrogen consumption obligations and supporting pilot projects in various sectors, the government can accelerate investments and drive early adoption. While cost challenges remain, advancements in technology and economies of scale are expected to make green hydrogen a competitive and sustainable alternative to grey hydrogen. With the right policies and incentives, India can unlock the full potential of green hydrogen and pave the way for a greener and more sustainable future.

Additional Information: Green Hydrogen is a versatile energy carrier that can be used in various sectors, including power generation, transportation, and industrial applications. Its production does not emit greenhouse gases, making it a key solution for decarbonizing the economy. Green Hydrogen can be produced through various methods, including water electrolysis using renewable energy sources such as solar and wind power.


HGPL_Blog_181.jpg

September 30, 2023by Digital Team HGPL0

Introduction

ACME Group, a well-known diversified renewable energy company, has set its sights on revolutionizing the hydrogen industry in India. In a significant development, the company has signed an agreement with Tata Steel Special Economic Zone Limited (TSSEZL) to establish a 1.3 million tonnes per annum (MTPA) green ammonia production facility at the Gopalpur Industrial Park (GIP) in Odisha. This ambitious project is poised to become the largest single-location green hydrogen and its derivatives manufacturing facility in the country.

The Partnership with TSSEZL and IHI Corporation

ACME Group’s partnership with TSSEZL, a subsidiary of Tata Steel, is a strategic move that will provide the necessary infrastructure and support for the green ammonia project. The agreement was signed between Manikanta Naik, Managing Director of TSSEZL, and Sandeep Kashyap, Chief Operating Officer of ACME Group, in the presence of Hemant Sharma, Principal Secretary of Industries Department and Chairman of IDCO & IPICOL, Government of Odisha.

As part of this project, ACME Group plans to collaborate with Japan’s IHI Corporation, a global leader in engineering, procurement, and construction (EPC) services. The expertise of IHI Corporation in the hydrogen sector will play a crucial role in ensuring the success of the green ammonia production facility. This partnership will further strengthen the ties between India and Japan in the field of clean energy.

The Green Ammonia Production Facility

ACME Group’s green ammonia production facility at GIP will have a capacity of nearly 1.3 MTPA. The production of green ammonia will be based on the utilization of green hydrogen, which will be produced using renewable power sources. This approach ensures that the entire production process is environmentally friendly and aligns with the principles of sustainable development.

The Gopalpur Industrial Park, located in Ganjam District of Odisha, provides a strategic advantage for this project. The existing port facilities at Gopalpur will enable the export of the green ammonia to both Western and Eastern markets. This will position ACME Group as a key player in the global green hydrogen and ammonia market, offering competitive prices and contributing to India’s vision of becoming a global hub for green hydrogen and its derivatives.

Government Support and the Make in India Initiative

ACME Group’s green hydrogen and green ammonia project has received significant support from the Government of Odisha. The Hon’ble Chief Minister of Odisha, Shri Naveen Patnaik, and the Department of Industries, Govt of Odisha, have played instrumental roles in extending their support to this project. The proactive approach of the state government and its commitment to green energy have created a conducive environment for the establishment of such a groundbreaking facility.

The project also aligns with the Make in India initiative, spearheaded by the Hon’ble Union Minister for Power, New and Renewable Energy, Shri R K Singh, and the Ministry of New and Renewable Energy. This initiative aims to promote domestic manufacturing and position India as a global manufacturing hub. ACME Group’s green hydrogen and green ammonia project will contribute significantly to this vision by offering Make in India products to both domestic and international markets.

Odisha’s Vision for Green Hydrogen and Green Ammonia

The Government of Odisha envisions the state as a leader in the green fuel economy, with a particular focus on green hydrogen and green ammonia. Hemant Sharma, Principal Secretary of Industries Department and Chairman of IDCO & IPICOL, Government of Odisha, expressed this vision and reaffirmed the state’s commitment to sustainable and prosperous development. Odisha’s progressive policies, attractive incentives, and industry-friendly environment have positioned it as an ideal destination for investments in the green energy sector.

The Emerging Manufacturing Hub at Gopalpur Industrial Park

Tata Steel Special Economic Zone Limited’s Gopalpur Industrial Park (GIP) has emerged as a preferred investment destination in a short span of time. With plug-and-play infrastructure, multi-modal logistics connectivity, ready environmental clearance, and clear land titles, GIP offers a conducive environment for businesses to thrive. The industrial park has already attracted significant investments, amounting to around Rs. 4,000 crore, and is poised for further growth with ACME Group’s green ammonia production facility.

Conclusion

ACME Group’s ambitious plan to establish a 1.3 MTPA green ammonia production facility in Odisha marks a significant milestone in India’s journey towards a sustainable and green future. This project, in partnership with TSSEZL and IHI Corporation, will not only position ACME Group as a key player in the green hydrogen and ammonia market but also contribute to India’s goal of becoming a global hub for green hydrogen and its derivatives.

With the support of the Government of Odisha and its commitment to green energy, this project will pave the way for a green fuel revolution in India. The establishment of the green ammonia production facility at Gopalpur Industrial Park will create new opportunities for employment, boost the economy, and enhance India’s standing in the global clean energy landscape. ACME Group’s vision and efforts reflect their commitment to sustainable development and a cleaner, greener future for all.


HGPL_Blog_032.jpg

September 13, 2023by Digital Team HGPL0

Introduction

In a monumental leap towards embracing clean and sustainable energy solutions, India is set to witness the establishment of its inaugural hydrogen fuel facility. This landmark initiative, which is scheduled to take shape in the state of Jharkhand, signifies a resolute step towards reducing carbon emissions and diversifying the nation’s energy portfolio. This blog explores the significance of India’s first hydrogen fuel facility, its potential implications for the country’s energy landscape, and its role in driving a greener, more sustainable future.

A Glimpse into Hydrogen Fuel Facilities

Hydrogen fuel facilities represent a pivotal juncture in the global energy transition. These facilities leverage the power of hydrogen, one of the cleanest and most abundant elements in the universe, to produce energy. Through processes like electrolysis, hydrogen is extracted from water using renewable energy sources, thereby generating electricity and emitting only water vapor as a byproduct. This carbon-neutral approach holds immense promise for decarbonizing various sectors, including transportation, industry, and power generation.

Jharkhand’s Pioneering Initiative

The Indian state of Jharkhand is poised to make history by becoming the home of the country’s first hydrogen fuel facility. This transformative project is expected to set a precedent for harnessing clean energy and reducing dependence on fossil fuels. The upcoming facility is a testament to Jharkhand’s commitment to sustainable development and its determination to contribute to India’s ambitious climate goals.

The Implications of India’s First Hydrogen Fuel Facility

  1. Carbon Emission Reduction: The establishment of a hydrogen fuel facility aligns with India’s commitment to mitigate carbon emissions. By transitioning to hydrogen-based energy, the nation can significantly reduce its carbon footprint and contribute to a more sustainable environment.
  2. Energy Diversification: The advent of a hydrogen fuel facility underscores India’s determination to diversify its energy sources. This initiative reduces reliance on conventional fossil fuels and ushers in an era of cleaner, more versatile energy options.
  3. Clean Transportation: Hydrogen-based fuel holds the potential to revolutionize the transportation sector. From fuel cell vehicles to public transport systems, the adoption of hydrogen fuel can lead to emission-free mobility and improved air quality.
  4. Industrial Growth: The facility’s impact extends to industries by offering a cleaner energy source for various processes. Industries such as steel, chemicals, and manufacturing can embrace hydrogen as a means to achieve sustainable growth.
  5. Innovation and Leadership: India’s foray into hydrogen fuel facilities demonstrates its commitment to embracing innovation and leading the way in clean energy adoption. This initiative is expected to inspire other states and regions to follow suit.

A Greener Future on the Horizon

As the world grapples with environmental challenges and the urgency to address climate change, initiatives like India’s first hydrogen fuel facility provide hope for a more sustainable future. By capitalizing on hydrogen’s potential, Jharkhand is not only enhancing its energy security but also setting a precedent for other regions to adopt clean energy solutions.

Conclusion

The establishment of India’s inaugural hydrogen fuel facility in Jharkhand marks a significant milestone in the nation’s journey towards a cleaner and greener energy landscape. This pioneering initiative showcases the power of innovation, determination, and collaboration in driving sustainable development. As the facility takes shape, it ushers in a new era of clean energy possibilities, inspiring the nation and the world to prioritize environmental stewardship and create a better, more sustainable tomorrow.

Source: The New Indian Express


HGPL_Blog_04.jpg

August 17, 2023by Digital Team HGPL0

Denso, a Toyota automotive parts supplier, has ambitious plans to bring its solid-oxide electrolyser (SOE) to the market by 2030, according to local reports. It is even suggested that the first sales could be finalized as early as 2025, as reported by Japanese newspaper Nikkei.

Earlier this year, Denso announced its intention to develop an in-house SOE and conducted the first demonstration at its Hirose plant in July. The primary objective of this demonstration was to partially displace the use of grey hydrogen, which is currently employed to remove solder oxide and enhance the joinability of power cards—essential components of inverters used in hybrid or electric vehicles.

The unique feature of Denso’s SOE lies in its capability to split water heated to 700°C into H2 and O2. This process requires less power to produce hydrogen compared to more mature alkaline and proton-exchange membrane technologies, which typically operate at a lower temperature of 60°C.

However, one of the challenges associated with SOEs is the need for an external heat source due to the extremely high water temperature requirement. Without a readily available exothermic industrial process or power source producing substantial steam, additional electricity is required to heat the electrolyser.

Denso has highlighted the importance of maintaining the high temperature in SOEs, as heat dissipation occurs rapidly in such systems due to the temperature difference with the surroundings. This necessitates extra energy to keep the system hot, while some of the water vapor passes through the system without undergoing the desired reaction.

To address these challenges, Denso has developed a structure that efficiently recovers exhaust heat while minimizing heat dissipation from the heat exchanger surface. Additionally, the company has implemented a system to re-circulate steam, utilizing technologies similar to those used in vehicle parts. Moreover, Denso’s design integrates heat insulation with the electrolyser cell, ensuring the entire system remains compact. This approach contrasts with the common practice of assembling these two components separately in most SOEs.

By aiming for a commercial launch of its solid-oxide electrolyser by 2030, Denso demonstrates its commitment to advancing green hydrogen production technology. The potential for first sales by 2025 underlines the company’s determination to bring sustainable energy solutions to the market at the earliest opportunity. As Denso continues to refine and optimize its SOE, the world eagerly anticipates the role this technology will play in driving the green hydrogen revolution forward.


HGPL_Blog_03.jpg

August 13, 2023by Digital Team HGPL0

JSW Energy, a subsidiary of the Indian conglomerate JSW, is on track to commission what could potentially be India’s largest green hydrogen plant within the next 18 to 24 months. The facility, located in the northern state of Rajasthan, will utilize 25MW of renewable electricity to produce an annual volume of 3,800 tonnes of hydrogen. Although the electrolyser size is expected to be around 12MW, it will still be the largest in India upon commencement of operations.

JSW Energy’s CEO, Prashant Jain, reported that the company has already identified the site for the plant and is in the final stages of obtaining necessary incentives and approvals from the government of Rajasthan. The project is slated to be commissioned by March 2025, and discussions and negotiations for the machinery and other aspects of the plant are ongoing.

JSW Steel, one of India’s major players in the steel industry, has agreed to procure the hydrogen produced by the plant for use in its Vijayanagar steelworks. Located in the southern state of Karnataka, the Vijayanagar steel plant is one of the world’s largest, boasting a production capacity of 12 million tonnes. The green hydrogen will play a pivotal role in reducing carbon emissions and contribute to JSW Steel’s sustainability efforts.

JSW is actively exploring green hydrogen as a key component in its strategy to actively reduce carbon emissions. The adoption of new hydrogen technologies, such as carbon capture, is a vital part of their commitment to sustainability and a cleaner future. The company is also investing in electric arc furnaces, sourcing renewable electricity, and focusing on enhancing energy and process efficiencies. The long-term goal is to substantially reduce thermal coal usage by 2030, inching closer to a zero-emission thermal coal operation.

The iron and steel industry in India currently accounts for a significant portion of greenhouse gas emissions, releasing approximately 320 million tonnes of CO2 in 2022. To address this challenge, the Indian government has initiated steps towards green steel production, with plans to tender 4.5 billion rupees ($55 million) for pilot green steel plants. Additionally, discussions are underway to potentially mandate the use of green hydrogen in certain sectors, although no final decision has been made on this policy.

JSW Energy’s commitment to establishing the largest green hydrogen plant in India reflects the growing focus on sustainable practices and the pivotal role that green hydrogen can play in decarbonizing industries. As India seeks to achieve its climate goals and transition towards a greener energy landscape, initiatives like this mark a significant step in the right direction.


HGPL_11.jpg

Introduction:
In recent years, the world has witnessed a growing recognition of the importance of transitioning towards cleaner and sustainable energy sources. In this regard, the emergence of green hydrogen as a potential game-changer has garnered significant attention. India, with its ambitious plans and commitment towards renewable energy, is poised to become a significant player in the global green hydrogen market.

In a recent statement, Hardeep Singh Puri, a prominent figure in India’s energy sector, emphasized India’s potential to be the epicenter for green hydrogen development. Let’s delve deeper into the implications of this statement and understand how India is positioning itself as a key player in the green hydrogen revolution.

India’s Renewable Energy Ambitions:
India has been actively pursuing its renewable energy ambitions, aiming to achieve a target of 450 gigawatts (GW) of renewable energy capacity by 2030. This ambitious goal encompasses various sources such as solar, wind, hydro, and bioenergy. However, in order to achieve a complete transition to clean energy, a reliable and sustainable energy storage solution is essential. This is where green hydrogen comes into play.

The Significance of Green Hydrogen:
Green hydrogen refers to hydrogen produced through electrolysis using renewable energy sources like solar and wind power. It offers a clean and sustainable alternative to conventional hydrogen production methods that rely on fossil fuels. Green hydrogen can be stored, transported, and utilized across multiple sectors, including transportation, industrial processes, and power generation. Its versatility and potential to decarbonize various sectors make it a key enabler of a sustainable energy future.

India’s Green Hydrogen Potential:
India, with its abundant solar and wind resources, holds immense potential for green hydrogen production. The government, recognizing this potential, has initiated several measures to promote green hydrogen development. The National Hydrogen Mission, launched as part of India’s comprehensive energy strategy, aims to establish a hydrogen ecosystem encompassing production, storage, and utilization. Additionally, collaborations with international partners and the private sector are being fostered to drive research, development, and deployment of green hydrogen technologies.

Advantages of India’s Positioning:
India’s position as the epicenter for green hydrogen development offers several advantages. Firstly, the country’s large domestic market provides a significant opportunity for scaling up green hydrogen projects. The demand for clean energy solutions is rapidly increasing, and green hydrogen can meet the needs of diverse sectors, including transportation, industrial processes, and power generation.

Secondly, India’s cost advantage in renewable energy deployment can be leveraged for green hydrogen production. The declining costs of solar and wind power, coupled with advancements in electrolyzer technology, are making green hydrogen increasingly cost-competitive. India’s expertise in renewable energy deployment can drive down the costs of green hydrogen production, making it more accessible and commercially viable.

Thirdly, India’s potential to export green hydrogen can position the country as a major global player in the hydrogen market. With growing international demand for clean energy solutions, India can leverage its green hydrogen capabilities to become an exporter of this valuable resource, contributing to both economic growth and global sustainability goals.

India’s ambition to become the epicenter for green hydrogen development reflects its commitment to a sustainable and clean energy future. With abundant renewable energy resources, a growing domestic market, and a favorable policy environment, India is well-positioned to drive the green hydrogen revolution. The government’s focus on promoting research, development, and deployment, along with collaborations with international partners, will accelerate the growth of the green hydrogen ecosystem in the country. As India emerges as a prominent player in the global green hydrogen market, it will contribute significantly to achieving global climate targets while fostering economic growth and energy independence.



December 7, 2022by Digital Team HGPL0

The state currently needs about 0.9 million tonnes of hydrogen per year, mainly for the manufacturing of nitrogenous fertilizers. The policy concentrates on the chemical, fertilizer, and refinery industries in an effort to move the state toward a green hydrogen economy. For the following five years, the policy will be in force.

Additionally, by 2028, the state hopes to blend 20% green hydrogen into all hydrogen used by its existing fertilizer and refinery units. The draft policy suggests a capital expenditure subsidy in 2024 equal to 60% of the electrolyzer’s cost. The minimum capacity needed to be eligible for the subsidy is 50 MW or more. The financial incentive from the state government will be cut in half to 20% by 2027.

Additionally, a state-level committee will be established to take care of all the obligations, including the monitoring and evaluation of the policy. Additionally, the plan calls for providing R&D facilities and companies with the one-time financial support of 30% for the procurement of technology up to a maximum of Rs 50 million.

A skill-development program will be supported by the center in order to strengthen state capabilities and get the workforce ready for the transition to green hydrogen and ammonia.

The move is a precursor to rolling out the final policy that would aim to make Uttar Pradesh a 100% green hydrogen/ammonia-consuming state by 2035. Turning the state into a leading green hydrogen/ammonia producer is another objective.

The policy would also promote green hydrogen/ammonia production, market creation, and demand aggregation.

“The state envisions to promote green hydrogen/ammonia as the foundational pillar for the green energy transition in UP and make the state ready for a net-zero economy in the future,” says the draft policy that was put in the public domain by the Uttar Pradesh New and Renewable Energy Development Agency (UPNEDA), the nodal agency for the purpose.

The policy will focus primarily on two major hydrogen/ammonia demand centers in Uttar Pradesh – nitrogenous (N) fertilizers and the refinery sector. It will also cover other emerging industries and applications of green hydrogen in the future.

Incentives provided in the “Industrial Investment and Employment Promotion Policy 2017”, such as exemption of stamp duty, tax reimbursement, capital interest subsidy, infrastructure interest subsidy, and electricity duty will be applicable to new green hydrogen/ammonia investments and expansion of existing fertilizer units in the state.



November 19, 2022by Digital Team HGPL0

According to two officials aware of the development, the government has selected 10 potential states that might serve as important facilitators for India’s National Green Hydrogen Mission by facilitating the production of green hydrogen. Karnataka, Odisha, Gujarat, Rajasthan, Maharashtra, Tamil Nadu, Andhra Pradesh, Kerala, Madhya Pradesh, and West Bengal are some of these.

The Indian government has identified states which have the potential to become green hydrogen manufacturing hubs. These are the states most likely to have green hydrogen or ammonia manufacturing zones or clusters, which will aid India in the early years of its National Green Hydrogen Mission.

These states have been chosen based on the refineries, ports, and steel and fertilizer industries, as well as the current and potential renewable energy generation capacity in the areas. As another industry that can offtake green hydrogen, we have also integrated the city gas distribution network at some locations, according to a senior official in the ministry of new and renewable energy (MNRE).

On November 2, during the first day of the three-day Invest Karnataka 2022 – Global Investors Meet, the Karnataka government signed a set of agreements totaling Rs 5.20 lakh crore. The Karnataka government intends to create India’s first green hydrogen manufacturing cluster or zone through the use of Rs 5.20 lakh crore, of which Rs 2.9 lakh crore will be invested in the green hydrogen and derivatives industry alone.

The nation’s top producer of steel, Odisha, has also made the decision to promote the production of green hydrogen and green ammonia. Steel production can be done more sustainably by employing green hydrogen, which is produced by splitting water using solar and wind energy.

Additionally, this can lessen the industry’s reliance on imported coking coal. The state is presenting itself to investors as a center for the export of green hydrogen in addition to having several important ports and creating new ones. 6,000 square kilometers of land parcels in Banaskantha and Kutch in Gujarat have been set aside solely for hydrogen projects in the state.

Tamil Nadu has given the ACME Group permission to invest Rs 52,474 crore in a green hydrogen and ammonia project. The proposed facility would feature a 1.5 GW electrolyzer, a 5 GW solar power plant, and 1.1 million tonnes of ammonia production capacity. It also includes research and development work, pilot projects, enabling policies and regulations, and infrastructure development.