green hydrogen Archives - Page 3 of 6 - Hydrogengentech

HGPL_Blog_17.jpg

September 27, 2023by Digital Team HGPL0

Introduction

In a significant stride towards achieving a sustainable energy future, India is poised to introduce a groundbreaking mandatory green hydrogen plan. As the world grapples with climate change and the urgent need to reduce carbon emissions, green hydrogen emerges as a potent solution. This technical blog delves into the details of India’s forthcoming mandatory green hydrogen plan, its potential implications for the energy sector, and its role in shaping a cleaner and greener future.

 

The Imperative of Green Hydrogen

Green hydrogen, produced through the electrolysis of water using renewable energy sources, is gaining traction as a clean and sustainable alternative to conventional fossil fuels. With no carbon emissions and the potential to be used across various sectors, including transportation, industry, and power generation, green hydrogen offers a pathway to decarbonize the economy and mitigate the impacts of climate change.

 

The Genesis of the Mandatory Plan

The introduction of a mandatory green hydrogen plan signifies India’s commitment to aligning its energy policies with environmental sustainability. As per reports, the plan is slated for submission to the Cabinet soon, underscoring the urgency and priority that the Indian government places on transitioning to cleaner energy sources.

 

Key Aspects of the Mandatory Plan

  1. Regulatory Framework: The mandatory green hydrogen plan is expected to outline a regulatory framework that mandates the integration and utilization of green hydrogen across industries. This framework is likely to encompass production, distribution, and consumption aspects.
  2. Sectoral Integration: The plan is anticipated to cover a broad spectrum of sectors, including transportation, industry, power generation, and more. By ensuring a comprehensive approach, the plan aims to maximize the impact of green hydrogen adoption.
  3. Renewable Integration: To ensure a consistent supply of renewable energy for hydrogen production, the plan might include strategies to enhance renewable energy capacity, grid stability, and energy storage solutions.
  4. Investment Incentives: The plan could offer incentives and subsidies to encourage industries to adopt green hydrogen. These incentives may include tax benefits, grants, and concessional financing to promote green hydrogen projects.
  5. Technology Development: A crucial aspect of the plan may involve fostering research and development in green hydrogen technologies, including advanced electrolysis methods and storage solutions.

 

Potential Implications

  1. Carbon Emission Reduction: The mandatory green hydrogen plan has the potential to significantly reduce carbon emissions across sectors by replacing fossil fuels with clean hydrogen.
  2. Energy Security: By encouraging the use of green hydrogen, India can enhance its energy security by reducing dependence on imported fossil fuels.
  3. Industrial Transformation: Industries such as steel, chemicals, and transportation can undergo a transformation by incorporating green hydrogen into their operations.
  4. Innovation and Job Creation: The plan’s emphasis on research and development can stimulate innovation and create new job opportunities in the clean energy sector.
  5. Global Leadership: As one of the world’s fastest-growing economies, India’s adoption of a mandatory green hydrogen plan can set an example for other nations striving to transition to cleaner energy sources.

 

Conclusion

India’s forthcoming mandatory green hydrogen plan marks a pivotal moment in the nation’s journey towards sustainability. By mandating the adoption of green hydrogen across sectors, India is positioning itself as a global leader in the transition to cleaner energy sources. As the plan is poised to be presented to the Cabinet, the world awaits with anticipation, recognizing the potential of this initiative to shape a greener, more resilient, and sustainable future for generations to come.


HGPL_Blog_23.jpg

September 25, 2023by Digital Team HGPL0

Introduction

India, a country with ambitious goals for economic development, energy security, and a low-carbon economy, is making significant strides in harnessing the potential of green hydrogen. Green hydrogen, produced using renewable electricity and water, has emerged as a clean energy vector to support India’s deep decarbonization strategy. It finds applications in decarbonizing hard-to-abate sectors, such as steel, chemicals, long-haul transport, shipping, and aviation. In this article, we will explore the potential of green hydrogen in rebalancing India’s energy portfolio and discuss the strategic importance, demand, and domains for development in the green hydrogen value chain.

 

The Growing Demand for Green Hydrogen in India

India’s demand for hydrogen has been steadily increasing, and in 2020, it accounted for approximately 8% of the global hydrogen demand. However, with the focus on renewable energy generation and decarbonization, the demand for green hydrogen is expected to rise significantly. By 2050, India’s hydrogen demand is predicted to increase more than fourfold, potentially accounting for close to 10% of the world’s hydrogen needs. Green hydrogen, with its decarbonizing potential, is expected to play a crucial role in meeting this growing demand.

The current demand for hydrogen in India primarily comes from sectors like fertilizers, chemicals, and refineries. However, as the country moves towards a green hydrogen-based economy, the demand is expected to expand into sectors such as power generation, energy storage, grid stability, heavy-duty transport, steel, and cement industries. The goal is to produce 5 million metric tons (MMT) per annum of green hydrogen by 2030, which could potentially abate around 50 MMT of annual CO2 emissions.

 

Strategic Importance of Green Hydrogen in India

The transition towards green hydrogen is of strategic importance to India’s larger goals for economic development, energy security, and a low-carbon economy. As the country rapidly adopts renewable energy sources and electrifies sectors like transport, there is a need to decarbonize industries like steel, ammonia, cement, and plastic, which currently rely heavily on fossil fuels. Green hydrogen offers a viable solution to decarbonize these hard-to-abate sectors, ensuring a real transition towards a low-carbon economy.

India’s renewable energy sector possesses significant potential for the production of green hydrogen. Unlike fossil fuels, green hydrogen can be produced anywhere with ample renewable potential, providing an opportunity for domestic production and reducing reliance on imports. This energy carrier can help India achieve energy independence, while also contributing to the country’s economic competitiveness.

 

Domains for Development in the Green Hydrogen Value Chain

The development of a robust green hydrogen value chain is crucial for India to leverage its renewable energy potential and become a global leader in this field. The value chain encompasses various stages, including production, storage, supply, research and development, export, component manufacturing, and domestic application.

To establish a strong foundation for the green hydrogen economy, India needs to focus on production and export. Research and development play a vital role in reducing the cost of green hydrogen and making it more competitive with grey hydrogen, which is produced using fossil fuels. The supply and transportation of green hydrogen also require significant attention to ensure its seamless integration into various sectors.

The development of component manufacturing, storage infrastructure, and domestic application should align with the growth of the Indian market for green hydrogen. It is essential to introduce the right policies and mandates to facilitate the uptake of green hydrogen and drive its adoption across industries.

 

Policy Making to Boost Green Hydrogen Development

The role of policy making is crucial in promoting the development and adoption of green hydrogen. Governments and stakeholders need to design policies that encourage sustainable hydrogen production while ensuring safety, affordability, and availability. Some key areas for consideration by policymakers include:

  • Demand creation: Policies that favor demand creation can incentivize the early adoption of green hydrogen as a clean energy vector.
  • Financial support: A policy framework based on a risk-sharing model can mitigate investment risks and support public-private partnerships for the rapid rollout of green hydrogen projects.
  • Technology and scale of manufacturing: Policies promoting research and development, knowledge sharing, technology transfer, and collaboration can drive down the cost of green hydrogen and enhance competitiveness.
  • International trade: Policies supporting international trade can help mitigate uncertainties in domestic demand and boost investor confidence. Harmonization of standards and the development of hydrogen hubs/valleys near ports can facilitate international trade.
  • Harmonization of global standards and certification: Establishing globally accepted standards and certification systems is essential to ensure clean practices, promote international trade, and build confidence among consumers, developers, and investors.
  • Skill development: To support the transition to green hydrogen, there is a need for skilled and unskilled workforce. Training programs, apprenticeships, and the introduction of new educational courses can help develop the necessary skills across the hydrogen ecosystem.

 

Latest Developments in India’s Green Hydrogen Economy

India has recognized the critical role of green hydrogen in its energy transition mission and has set ambitious goals for energy independence and net-zero emissions. The National Green Hydrogen Mission provides a comprehensive action plan for establishing a green hydrogen ecosystem in the country. The government has allocated significant financial resources to support the mission, with the aim of creating over six lakh jobs and reducing the energy import bill by over one lakh crore.

To achieve these goals, collaboration between industry, academia, and the government is crucial. Companies like Hydrogen Gentech Private Limited (HGPL) are playing a significant role in the development of green hydrogen technologies and applications in India. HGPL is focused on manufacturing and supplying hydrogen generation plants based on green hydrogen technologies, supporting the country’s efforts towards a sustainable and low-carbon future.

 

Conclusion

The harnessing of green hydrogen has the potential to revolutionize India’s energy portfolio and contribute to its goals of economic development, energy security, and a low-carbon economy. With its applications in decarbonizing hard-to-abate sectors and its role as a domestically produced energy carrier, green hydrogen can pave the way for a sustainable and independent energy future for India.

By focusing on the development of the green hydrogen value chain, implementing supportive policies, and fostering collaboration, India can position itself as a global leader in green hydrogen technologies. The transition towards green hydrogen represents a significant opportunity for India to reduce its carbon footprint, drive economic growth, and contribute to global efforts in combating climate change.


HGPL_Blog_24.jpg

September 22, 2023by Digital Team HGPL0

Introduction

The energy sector is undergoing a transformative shift towards sustainable and eco-friendly fuel sources. One such innovation that holds immense promise is the blending of green hydrogen with natural gas. Green hydrogen, also known as renewable hydrogen, is produced through the electrolysis of water using renewable energy sources like solar and wind power. This clean and abundant source of energy has the potential to revolutionize various sectors, including industry, renewable energy, fuel, and mobility. In this article, we will explore the pioneering efforts of NTPC in blending green hydrogen with piped natural gas (PNG) and its implications for the energy industry.

 

The Need for Green Hydrogen Blending

The blending of green hydrogen with natural gas is driven by two major factors: energy security and decarbonization. As the world grapples with the challenges of climate change and reducing carbon emissions, finding sustainable and reliable sources of energy has become imperative. Green hydrogen offers a viable solution to these challenges by providing a clean and renewable fuel source that can be integrated into existing infrastructure, such as the PNG network.

 

NTPC’s Pilot Project in Surat

NTPC, India’s state-run power giant, has embarked on a groundbreaking pilot project in its Kawas township in Surat, Gujarat. This project, which has been running for the past nine months, is the first of its kind in India, blending green hydrogen with natural gas. The project is a joint effort between NTPC and Gujarat Gas Limited, a leading gas distribution company.

The pilot project aims to assess the feasibility and economic viability of blending green hydrogen with PNG. By blending up to 10 percent green hydrogen with the existing PNG network, NTPC aims to demonstrate that this solution can be more economical than conventional liquefied petroleum gas (LPG). Initial data shared by NTPC indicates that the cost of using 5 percent hydrogen blended PNG is Rs 63.95 per month lower than LPG, while for 10 percent blended PNG, the cost reduction stands at Rs 5.77 per month.

 

Benefits and Challenges of Green Hydrogen Blending

The blending of green hydrogen with PNG offers several benefits. First and foremost, it reduces carbon emissions, contributing to the global efforts to combat climate change. Green hydrogen is a clean fuel that produces only water vapor when burned, making it an environmentally friendly alternative to fossil fuels. Additionally, blending green hydrogen with PNG enhances energy security by diversifying the energy mix and reducing dependence on traditional fuel sources.

However, there are also challenges associated with green hydrogen blending. One of the key challenges is the cost of production and infrastructure development. While green hydrogen has the potential to be cost-competitive with conventional fuels in the long run, the initial investments required for electrolyzers and storage facilities can be significant. Additionally, scaling up production and establishing a robust supply chain will be crucial for the widespread adoption of green hydrogen blending.

 

Pilot Project Findings and Future Outlook

The pilot project conducted by NTPC has yielded positive results thus far. The gas composition at 5 percent blending showed perfect homogeneity, indicating that the blending process does not adversely affect the natural gas pipeline network. The material assessment of the PNG network also revealed no adverse effects on pipelines, burners, or rubber seals, further validating the feasibility of green hydrogen blending.

Looking ahead, NTPC plans to continue its efforts to optimize the blending process and explore the potential of scaling up production. The success of the pilot project in Surat paves the way for wider adoption of green hydrogen blending across the country. As technology advances and economies of scale are achieved, the cost of green hydrogen production is expected to decrease, making it a more viable and attractive option for various industries.

 

Hydrogen Gentech Private Limited (HGPL)

In the pursuit of green hydrogen, HGPL is an international technology-based manufacturer and supplier of hydrogen generation plants based in India. The company specializes in the development and implementation of green hydrogen generation, purification, and recovery technologies. With a clear focus on sustainable and eco-friendly solutions, HGPL is at the forefront of driving the adoption of green hydrogen in various sectors, including industry, renewable energy, fuel, and mobility.

 

Conclusion

The integration of green hydrogen into the energy industry has the potential to reshape the way we produce and consume energy. NTPC’s pilot project in Surat highlights the economic viability and environmental benefits of blending green hydrogen with PNG. As the world continues to prioritize sustainability and decarbonization, green hydrogen will play a crucial role in achieving these goals. With companies like HGPL driving innovation and technology advancements, the future of green hydrogen looks promising. As we transition towards a cleaner and more sustainable energy future, green hydrogen is poised to become a game-changer in the energy industry.


HGPL_Blog_12.jpg

September 21, 2023by Digital Team HGPL0

Introduction

The world is witnessing a paradigm shift towards sustainable energy sources, and hydrogen is emerging as a game-changer in the quest for a greener future. In line with this global trend, NTPC (National Thermal Power Corporation) has taken a significant step towards achieving carbon neutrality by initiating the trial run of hydrogen buses in Leh, India. This pioneering project aims to demonstrate the viability and efficiency of hydrogen as an alternative fuel for public transportation. The first hydrogen bus arrived in Leh on August 17, marking the beginning of a three-month-long process of field trials and roadworthiness tests. This article delves into the details of this groundbreaking initiative and its potential impact on the future of sustainable mobility.

 

The Green Hydrogen Mobility Project

The Green Hydrogen Mobility Project, spearheaded by NTPC, is a testament to India’s commitment to renewable energy and sustainable development. Located at an altitude of 11,562 ft, this project is co-located with a dedicated solar plant with a capacity of 1.7 MW, ensuring a renewable and carbon-neutral power source for the hydrogen generation process. The key highlight of this project is the deployment of fuel cell buses that are specifically designed for operation in sub-zero temperatures and rarefied atmospheres, which are typical of high-altitude regions like Leh.

 

NTPC’s Vision for a Green Future

NTPC, a leading power generation company in India, has set ambitious goals to achieve 60 GW of renewable energy capacity by 2032. As part of its decarbonization initiatives, the company is actively exploring various technologies, including hydrogen blending, carbon capture, electric buses, and smart NTPC townships. By venturing into the green hydrogen technology and energy storage domain, NTPC aims to become a major player in the transition towards a sustainable and low-carbon future.

 

The Significance of Green Hydrogen

Green hydrogen, produced through the electrolysis of water using renewable energy sources, holds immense potential as a clean and versatile energy carrier. Unlike conventional hydrogen production methods, which rely on fossil fuels, green hydrogen offers a sustainable alternative that does not contribute to greenhouse gas emissions. It can be used in various sectors, including industry, transportation, and power generation, thereby reducing dependence on fossil fuels and mitigating the adverse effects of climate change.

 

The Advantages of Hydrogen Buses

Hydrogen buses, also known as fuel cell buses, offer several advantages over conventional diesel or electric buses. These advantages make them an attractive option for sustainable and zero-emission public transportation:

  1. Zero Emissions: Hydrogen buses emit only water vapor and do not release harmful pollutants or greenhouse gases during operation, making them a clean and environmentally friendly transportation solution.
  2. Extended Range: Hydrogen buses have a longer range compared to electric buses, eliminating concerns about limited battery capacity and reducing the need for frequent recharging.
  3. Fast Refueling: Hydrogen refueling is as quick and convenient as refueling conventional vehicles, with a refueling time of around five minutes, comparable to filling up a tank with gasoline or diesel.
  4. Versatility: Hydrogen buses can operate in extreme weather conditions, including sub-zero temperatures, making them suitable for regions with challenging climates.

 

Hydrogen Gentech Private Limited (HGPL)

Hydrogen Gentech Private Limited (HGPL) is an Indian company at the forefront of green hydrogen generation, purification, and recovery technologies. With a strong focus on sustainability and green solutions, HGPL is actively involved in developing hydrogen generation plants for various industries, renewable energy projects, and mobility sectors. Their expertise and technologies play a crucial role in supporting initiatives of Green Hydrogen Projects, ensuring the efficient and reliable production of clean hydrogen.

 

The Roadmap for Future Implementation

The successful trial run of hydrogen buses in Leh paves the way for the widespread adoption of green hydrogen in public transportation across India. NTPC and other stakeholders are actively working towards establishing hydrogen refueling infrastructure, developing fuel cell technologies, and optimizing the overall efficiency of hydrogen-based transportation systems. By creating an ecosystem that supports the production, distribution, and utilization of green hydrogen, India can accelerate its transition towards a sustainable and carbon-neutral future.

 

Conclusion

NTPC’s initiation of the trial run of hydrogen buses in Leh marks a significant milestone in India’s journey towards a greener and more sustainable future. The Green Hydrogen Mobility Project demonstrates the potential of hydrogen as a clean and versatile energy carrier, particularly in the transportation sector. With the advent of hydrogen buses, India is poised to reduce its carbon footprint and improve air quality in urban areas. As the world embraces the power of green hydrogen, it is evident that sustainable mobility solutions like hydrogen buses will play a vital role in shaping a cleaner and more sustainable world for future generations.


HGPL_Blog_041.jpg

September 15, 2023by Digital Team HGPL0

Introduction

The global pursuit of sustainable energy solutions has propelled the demand for green hydrogen, a promising alternative to traditional fossil fuels. Central to the production of green hydrogen is the electrolyzer, a crucial technology that splits water into hydrogen and oxygen using electricity. India, with its burgeoning renewable energy sector and growing technological capabilities, has the potential to emerge as a global manufacturing hub for green hydrogen electrolyzers. This technical blog delves into the factors that position India as a manufacturing powerhouse for electrolyzers and examines the challenges and opportunities on this transformative journey.

Understanding Electrolyzers

Electrolyzers are pivotal components of the green hydrogen production process. These devices utilize electrical energy to initiate the electrolysis of water, resulting in the separation of hydrogen and oxygen gases. Electrolyzers consist of several key components:

  1. Anode and Cathode: These electrodes facilitate the electrochemical reaction by serving as sites for oxidation (anode) and reduction (cathode) processes.
  2. Electrolyte: An ion-conductive material that facilitates the movement of ions between the anode and cathode.
  3. Power Supply: An external electrical source that provides the energy required for the electrolysis process.
  4. Separator: A physical barrier that prevents the mixing of the produced hydrogen and oxygen gases.
  5. Cooling and Ventilation Systems: These systems maintain optimal operating temperatures and ensure safe gas venting.

India’s Potential as a Manufacturing Hub

  1. Abundant Renewable Energy: India boasts abundant solar and wind energy resources, creating a conducive environment for green hydrogen production. Electrolyzers require a consistent energy supply, making India’s renewable capacity a major advantage.
  2. Skilled Workforce: India’s strong engineering and technical talent pool positions it to drive innovation in electrolyzer manufacturing, from design to production and maintenance.
  3. Manufacturing Expertise: The country’s experience in manufacturing industries, combined with advancements in automation and robotics, contributes to efficient and high-quality production processes.
  4. Cost Competitiveness: India’s manufacturing capabilities can potentially lead to cost-effective electrolyzer production, which is crucial for the widespread adoption of green hydrogen.
  5. Government Initiatives: The Indian government’s focus on renewable energy and hydrogen as part of its energy mix supports the growth of electrolyzer manufacturing.

Challenges and Opportunities

  1. Research and Development: While India possesses the foundational knowledge, increased investment in research and development is essential to refine electrolyzer technology and enhance efficiency.
  2. Infrastructure Development: Establishing advanced manufacturing facilities, supply chains, and logistics networks will be pivotal to realizing India’s manufacturing potential.
  3. Global Collaboration: Collaborations with international electrolyzer manufacturers can facilitate technology transfer, skill enhancement, and knowledge exchange.
  4. Regulatory Framework: A clear regulatory framework that promotes innovation, quality standards, and sustainability will be crucial for the growth of the electrolyzer manufacturing industry.
  5. Scaling Up: As demand for green hydrogen grows globally, India must scale up its manufacturing capacity to meet international requirements.

Conclusion

India’s journey towards becoming a global manufacturing hub for green hydrogen electrolyzers holds immense promise for the nation’s energy transition and the global effort to combat climate change. With its renewable energy potential, skilled workforce, and manufacturing expertise, India can lead the way in producing efficient and cost-effective electrolyzers. By addressing challenges and capitalizing on opportunities, India can contribute significantly to a greener and more sustainable energy future, advancing the global adoption of green hydrogen and driving positive change on a global scale.

Source: Economic Times Energy

 

 


HGPL_Blog_032.jpg

September 13, 2023by Digital Team HGPL0

Introduction

In a monumental leap towards embracing clean and sustainable energy solutions, India is set to witness the establishment of its inaugural hydrogen fuel facility. This landmark initiative, which is scheduled to take shape in the state of Jharkhand, signifies a resolute step towards reducing carbon emissions and diversifying the nation’s energy portfolio. This blog explores the significance of India’s first hydrogen fuel facility, its potential implications for the country’s energy landscape, and its role in driving a greener, more sustainable future.

A Glimpse into Hydrogen Fuel Facilities

Hydrogen fuel facilities represent a pivotal juncture in the global energy transition. These facilities leverage the power of hydrogen, one of the cleanest and most abundant elements in the universe, to produce energy. Through processes like electrolysis, hydrogen is extracted from water using renewable energy sources, thereby generating electricity and emitting only water vapor as a byproduct. This carbon-neutral approach holds immense promise for decarbonizing various sectors, including transportation, industry, and power generation.

Jharkhand’s Pioneering Initiative

The Indian state of Jharkhand is poised to make history by becoming the home of the country’s first hydrogen fuel facility. This transformative project is expected to set a precedent for harnessing clean energy and reducing dependence on fossil fuels. The upcoming facility is a testament to Jharkhand’s commitment to sustainable development and its determination to contribute to India’s ambitious climate goals.

The Implications of India’s First Hydrogen Fuel Facility

  1. Carbon Emission Reduction: The establishment of a hydrogen fuel facility aligns with India’s commitment to mitigate carbon emissions. By transitioning to hydrogen-based energy, the nation can significantly reduce its carbon footprint and contribute to a more sustainable environment.
  2. Energy Diversification: The advent of a hydrogen fuel facility underscores India’s determination to diversify its energy sources. This initiative reduces reliance on conventional fossil fuels and ushers in an era of cleaner, more versatile energy options.
  3. Clean Transportation: Hydrogen-based fuel holds the potential to revolutionize the transportation sector. From fuel cell vehicles to public transport systems, the adoption of hydrogen fuel can lead to emission-free mobility and improved air quality.
  4. Industrial Growth: The facility’s impact extends to industries by offering a cleaner energy source for various processes. Industries such as steel, chemicals, and manufacturing can embrace hydrogen as a means to achieve sustainable growth.
  5. Innovation and Leadership: India’s foray into hydrogen fuel facilities demonstrates its commitment to embracing innovation and leading the way in clean energy adoption. This initiative is expected to inspire other states and regions to follow suit.

A Greener Future on the Horizon

As the world grapples with environmental challenges and the urgency to address climate change, initiatives like India’s first hydrogen fuel facility provide hope for a more sustainable future. By capitalizing on hydrogen’s potential, Jharkhand is not only enhancing its energy security but also setting a precedent for other regions to adopt clean energy solutions.

Conclusion

The establishment of India’s inaugural hydrogen fuel facility in Jharkhand marks a significant milestone in the nation’s journey towards a cleaner and greener energy landscape. This pioneering initiative showcases the power of innovation, determination, and collaboration in driving sustainable development. As the facility takes shape, it ushers in a new era of clean energy possibilities, inspiring the nation and the world to prioritize environmental stewardship and create a better, more sustainable tomorrow.

Source: The New Indian Express


HGPL_BLog_07A.jpg

August 30, 2023by Digital Team HGPL0

Introduction

The world is at a critical juncture in its pursuit of sustainable energy solutions. As the devastating impacts of climate change become increasingly evident, the urgency to transition to cleaner and greener alternatives has never been more pressing. In this context, hydrogen emerges as a key player in the race to decarbonize various sectors of the economy. Acknowledging the immense potential of hydrogen as a clean energy source, Europe has taken a significant step forward. With the final approval of the Action Framework for the Deployment of Hydrogen Refueling Infrastructure (AFIR), Europe is set to install hundreds of hydrogen filling stations across the continent by 2030. This landmark decision is a game-changer in the quest for a sustainable future. In this blog, we delve into the significance of AFIR’s approval and its potential to shape the energy landscape of tomorrow.

 

AFIR: Empowering Hydrogen Mobility

The AFIR is a comprehensive strategy devised by the European Union (EU) to accelerate the deployment of hydrogen refueling infrastructure. One of the major barriers to the widespread adoption of fuel cell vehicles (FCVs) has been the lack of a robust network of hydrogen filling stations. AFIR aims to address this challenge by facilitating the establishment of hundreds of hydrogen refueling stations throughout Europe. With targeted investments, policy incentives, and coordinated efforts among EU member states, AFIR will serve as a catalyst for the growth of hydrogen mobility, empowering a cleaner and more sustainable transportation sector.

 

A Greener Horizon for Transport

The transportation sector accounts for a substantial portion of global greenhouse gas emissions. To meet ambitious climate targets, decarbonizing this sector is imperative. Hydrogen fuel cell vehicles offer a promising solution, as they emit only water vapor, producing zero tailpipe emissions. However, for FCVs to become a viable option for consumers, a reliable network of refueling infrastructure is essential. AFIR’s approval signals a resolute commitment to making green mobility a reality. With a comprehensive hydrogen refueling network in place, consumers can embrace fuel cell vehicles with confidence, reducing their carbon footprint and fostering sustainable transportation options.

 

Driving Technological Advancement

The approval of AFIR not only accelerates the deployment of hydrogen filling stations but also stimulates innovation and technological advancements. As the demand for hydrogen increases, companies will be incentivized to develop more efficient and cost-effective hydrogen production methods, storage solutions, and fuel cell technologies. This drive for innovation will not only benefit the transportation sector but also extend to other industries, such as energy production, heavy manufacturing, and grid balancing.

 

Boosting Economic Growth and Job Creation

The installation of hundreds of hydrogen filling stations is not merely an environmental initiative; it is also an economic one. The AFIR’s ambitious plan will create numerous economic opportunities and foster job growth. The construction, operation, and maintenance of hydrogen filling stations will generate employment and stimulate local economies. Additionally, investments in hydrogen infrastructure will spur the growth of hydrogen-related industries, propelling Europe to the forefront of the global hydrogen market.

 

A Unified Vision for a Greener Future

The approval of AFIR exemplifies the power of collaboration among EU member states. By adopting a unified vision for hydrogen mobility and refueling infrastructure, Europe is demonstrating its commitment to combating climate change and achieving its carbon reduction goals. This collective effort is crucial in making the hydrogen economy a reality and ensuring a sustainable and prosperous future for generations to come.

 

Conclusion

The final approval of the Action Framework for the Deployment of Hydrogen Refueling Infrastructure marks a defining moment in Europe’s pursuit of sustainable energy solutions. By committing to install hundreds of hydrogen filling stations by 2030, Europe is not only transforming its transportation sector but also leading the way in the global effort to combat climate change. AFIR’s strategic approach, backed by collaboration, investments, and innovation, positions Europe as a pioneer in hydrogen mobility and green energy solutions. As the world watches this ambitious plan unfold, Europe sets a compelling example for the rest of the globe to embrace hydrogen as a powerful force in shaping a cleaner, greener, and more sustainable future.


HGPL_Blog_04.jpg

August 17, 2023by Digital Team HGPL0

Denso, a Toyota automotive parts supplier, has ambitious plans to bring its solid-oxide electrolyser (SOE) to the market by 2030, according to local reports. It is even suggested that the first sales could be finalized as early as 2025, as reported by Japanese newspaper Nikkei.

Earlier this year, Denso announced its intention to develop an in-house SOE and conducted the first demonstration at its Hirose plant in July. The primary objective of this demonstration was to partially displace the use of grey hydrogen, which is currently employed to remove solder oxide and enhance the joinability of power cards—essential components of inverters used in hybrid or electric vehicles.

The unique feature of Denso’s SOE lies in its capability to split water heated to 700°C into H2 and O2. This process requires less power to produce hydrogen compared to more mature alkaline and proton-exchange membrane technologies, which typically operate at a lower temperature of 60°C.

However, one of the challenges associated with SOEs is the need for an external heat source due to the extremely high water temperature requirement. Without a readily available exothermic industrial process or power source producing substantial steam, additional electricity is required to heat the electrolyser.

Denso has highlighted the importance of maintaining the high temperature in SOEs, as heat dissipation occurs rapidly in such systems due to the temperature difference with the surroundings. This necessitates extra energy to keep the system hot, while some of the water vapor passes through the system without undergoing the desired reaction.

To address these challenges, Denso has developed a structure that efficiently recovers exhaust heat while minimizing heat dissipation from the heat exchanger surface. Additionally, the company has implemented a system to re-circulate steam, utilizing technologies similar to those used in vehicle parts. Moreover, Denso’s design integrates heat insulation with the electrolyser cell, ensuring the entire system remains compact. This approach contrasts with the common practice of assembling these two components separately in most SOEs.

By aiming for a commercial launch of its solid-oxide electrolyser by 2030, Denso demonstrates its commitment to advancing green hydrogen production technology. The potential for first sales by 2025 underlines the company’s determination to bring sustainable energy solutions to the market at the earliest opportunity. As Denso continues to refine and optimize its SOE, the world eagerly anticipates the role this technology will play in driving the green hydrogen revolution forward.


HGPL_Blog_03.jpg

August 13, 2023by Digital Team HGPL0

JSW Energy, a subsidiary of the Indian conglomerate JSW, is on track to commission what could potentially be India’s largest green hydrogen plant within the next 18 to 24 months. The facility, located in the northern state of Rajasthan, will utilize 25MW of renewable electricity to produce an annual volume of 3,800 tonnes of hydrogen. Although the electrolyser size is expected to be around 12MW, it will still be the largest in India upon commencement of operations.

JSW Energy’s CEO, Prashant Jain, reported that the company has already identified the site for the plant and is in the final stages of obtaining necessary incentives and approvals from the government of Rajasthan. The project is slated to be commissioned by March 2025, and discussions and negotiations for the machinery and other aspects of the plant are ongoing.

JSW Steel, one of India’s major players in the steel industry, has agreed to procure the hydrogen produced by the plant for use in its Vijayanagar steelworks. Located in the southern state of Karnataka, the Vijayanagar steel plant is one of the world’s largest, boasting a production capacity of 12 million tonnes. The green hydrogen will play a pivotal role in reducing carbon emissions and contribute to JSW Steel’s sustainability efforts.

JSW is actively exploring green hydrogen as a key component in its strategy to actively reduce carbon emissions. The adoption of new hydrogen technologies, such as carbon capture, is a vital part of their commitment to sustainability and a cleaner future. The company is also investing in electric arc furnaces, sourcing renewable electricity, and focusing on enhancing energy and process efficiencies. The long-term goal is to substantially reduce thermal coal usage by 2030, inching closer to a zero-emission thermal coal operation.

The iron and steel industry in India currently accounts for a significant portion of greenhouse gas emissions, releasing approximately 320 million tonnes of CO2 in 2022. To address this challenge, the Indian government has initiated steps towards green steel production, with plans to tender 4.5 billion rupees ($55 million) for pilot green steel plants. Additionally, discussions are underway to potentially mandate the use of green hydrogen in certain sectors, although no final decision has been made on this policy.

JSW Energy’s commitment to establishing the largest green hydrogen plant in India reflects the growing focus on sustainable practices and the pivotal role that green hydrogen can play in decarbonizing industries. As India seeks to achieve its climate goals and transition towards a greener energy landscape, initiatives like this mark a significant step in the right direction.


HGPL_Blog_021.jpg

August 12, 2023by Digital Team HGPL0

India, a nation committed to sustainability and clean energy, has made a significant stride towards a greener future by launching its first-ever green hydrogen subsidy auction. The government has set ambitious plans to support a maximum of 450,000 tonnes of annual green hydrogen production capacity. However, it is yet to publish a clear definition of what qualifies as ‘green’ hydrogen.

The auction, organized by the Solar Energy Corporation of India (SECI), has a capped capacity of 450,000 tonnes per year. Bidders will receive a maximum of 50 rupees ($0.60) per kilogram in the first year of operation, which will gradually reduce to 40 rupees/kg in the second year and 30 rupees/kg in the third and final year of the subsidy.

Divided into two “buckets,” the auction caters to biomass-based green hydrogen projects and facilities using various technologies for electrolysis. The biomass bucket has 40,000 tonnes per year of capacity, while the technology-agnostic bucket offers 410,000 tonnes of annual production capacity.

Bidders for each bucket will be selected based on the “least average incentive” until the capacity is fully allocated. Any remaining capacity in a bucket may be awarded to bidders from the other bucket if they meet the criteria.

Although previous documents hinted at the publication of a national green hydrogen standard, it has not been released yet by the SECI or the Ministry of New and Renewable Energy websites. It is believed that the standard may include limiting the carbon intensity of green hydrogen to 1kgCO2/kgH2 and requiring an entirely renewable energy source for electrolysis.

While biomass-based projects will not comply with the EU’s renewable H2 standards, which only cover renewable fuels of non-biological origin, it may still be a significant factor in India’s domestic supply of green hydrogen.

The SECI also has the authority to award only part of the requested capacity to bidders, allowing companies a seven-day refusal period before the capacity is offered to another company, with its own seven-day right of refusal.

As of now, no official announcement date has been set for the winning bidders of the subsidy auction.

Hydrogen Insight has reached out to the Ministry of New and Renewable Energy and the SECI for further information on the green hydrogen standard and other details regarding the auction.

India’s first green hydrogen subsidy auction marks a pivotal moment in the nation’s journey towards sustainable and clean energy. By encouraging investment and innovation in green hydrogen production, India is signaling its dedication to creating a greener and more prosperous future for its citizens and the planet.