National Hydrogen Mission Archives - Hydrogengentech

WhatsApp-Image-2024-04-29-at-7.51.23-PM.jpeg

April 29, 2024by Digital Team HGPL0

Green hydrogen is emerging as a cornerstone in the global transition to clean and sustainable energy. This revolutionary approach offers an unparalleled opportunity for India to lead the way in the hydrogen economy and achieve its ambitious climate goals. In this blog post, we will explore the role of green hydrogen in India’s energy landscape and discuss how it can reshape the country’s energy paradigm.

 

Understanding Green Hydrogen

Green hydrogen is produced through water electrolysis using renewable energy sources such as solar and wind power. This process is entirely carbon-free, making green hydrogen a clean and sustainable alternative to traditional fossil fuels. As a versatile energy carrier, green hydrogen can be used in various sectors including transportation, industry, and power generation.

India’s Energy Landscape

India’s energy demand is expected to grow rapidly in the coming years, driven by economic growth and urbanization. Traditionally, the country has relied heavily on fossil fuels such as coal and oil to meet its energy needs. However, this approach has led to significant environmental challenges, including air pollution and greenhouse gas emissions.

To address these challenges, India has set ambitious targets for renewable energy generation, aiming to achieve 450 GW of renewable capacity by 2030. Green hydrogen can play a pivotal role in achieving these goals by providing a clean, sustainable, and versatile energy source.

Advantages of Green Hydrogen

  1. Decarbonization: Green hydrogen can significantly reduce carbon emissions in key sectors such as transportation and industry.
  2. Energy Security: By utilizing local renewable resources, India can reduce its dependence on imported fossil fuels and enhance its energy security.
  3. Economic Growth: The development of a green hydrogen economy can create new jobs and stimulate economic growth in the renewable energy sector.
  4. Technological Innovation: Green hydrogen technologies offer opportunities for innovation in water electrolysis, storage, and distribution systems.

Applications of Green Hydrogen

  1. Power Generation: Green hydrogen can be used to produce electricity, providing a clean and reliable energy source.
  2. Transportation: Hydrogen fuel cells can power vehicles such as cars, buses, and trucks, offering an emissions-free alternative to traditional fuels.
  3. Industrial Processes: Green hydrogen can be used in industrial processes such as steel and cement production, reducing their carbon footprint.
  4. Energy Storage: Hydrogen can store excess renewable energy, providing a flexible and reliable energy storage solution.

India’s Green Hydrogen Initiatives

India has recognized the potential of green hydrogen and has taken several initiatives to promote its development:

  • National Hydrogen Mission: Launched in 2021, this mission aims to promote the production and use of green hydrogen in India.
  • Collaborations: India has partnered with international organizations and countries to develop hydrogen technologies and infrastructure.
  • Investment and Incentives: The government is providing financial incentives and support to encourage investment in green hydrogen projects.

Challenges and Future Outlook

While green hydrogen holds immense promise, there are challenges that need to be addressed:

  • Cost: The cost of producing green hydrogen is currently higher than that of traditional fuels. However, as technology advances and economies of scale are achieved, the cost is expected to decrease.
  • Infrastructure: Developing the necessary infrastructure for hydrogen production, storage, and distribution requires significant investment.
  • Policy and Regulation: Clear and supportive policies and regulations are essential to facilitate the growth of the green hydrogen industry.

The future of green hydrogen in India looks promising. As the country continues to invest in renewable energy and hydrogen technologies, it can lead the way in the global hydrogen economy. By embracing green hydrogen, India can unleash a new energy paradigm that supports sustainable development and helps combat climate change.

 


WhatsApp-Image-2024-04-09-at-7.11.15-PM-1.jpeg

April 10, 2024by Digital Team HGPL0

In a groundbreaking move towards sustainable transportation, Tata Cummins Joint Venture (JV) has recently unveiled hydrogen-based internal combustion engines in Jamshedpur, marking a significant milestone in the journey towards greener mobility. This innovative endeavor underscores the commitment of Tata Cummins JV to environmental stewardship and technological innovation.

 

The Promise of Hydrogen Power

Hydrogen, often hailed as the fuel of the future, has emerged as a key player in the quest for sustainable energy solutions. With its high energy density and zero emissions when used in fuel cells, hydrogen presents a compelling alternative to traditional fossil fuels. Now, Tata Cummins JV has leveraged the potential of hydrogen to develop internal combustion engines that offer cleaner and more efficient transportation solutions.

Advancing Green Mobility

The inauguration of hydrogen-based internal combustion engines represents a significant leap forward in the realm of green mobility. These engines, powered by hydrogen, emit only water vapor as a byproduct, making them environmentally friendly and conducive to reducing carbon footprints. By embracing this innovative technology, Tata Cummins JV is not only contributing to mitigating air pollution but also driving the transition towards a sustainable transportation ecosystem.

A Collaborative Effort for a Sustainable Future

The development and launch of hydrogen-based internal combustion engines are the result of collaborative efforts between Tata Cummins JV and various stakeholders in the hydrogen ecosystem. From research and development to testing and deployment, this initiative embodies the spirit of cooperation and innovation aimed at addressing the pressing challenges of climate change and pollution.

Unlocking New Possibilities

The introduction of hydrogen-based internal combustion engines opens up a myriad of possibilities across diverse sectors. From commercial vehicles to power generation and beyond, the versatility of hydrogen-powered engines promises to revolutionize the way we think about energy and transportation. With continued investment in research and infrastructure, Tata Cummins JV aims to drive widespread adoption of hydrogen technology and accelerate the transition to a sustainable future.

Looking Ahead

As Tata Cummins JV pioneers the adoption of hydrogen-based internal combustion engines in Jamshedpur and beyond, the journey towards sustainable transportation gains momentum. This groundbreaking initiative serves as a testament to the potential of hydrogen as a clean energy source and underscores the importance of collaboration and innovation in shaping a greener, more sustainable world.

In conclusion, the inauguration of hydrogen-based internal combustion engines by Tata Cummins JV heralds a new era of sustainable transportation, demonstrating the transformative power of technology and industry partnerships in driving positive environmental change. As we look towards the future, let us continue to embrace innovation and work together towards a cleaner, greener tomorrow.


WhatsApp-Image-2024-02-16-at-5.51.13-PM.jpeg

February 16, 2024by Digital Team HGPL0

Introduction

India is taking significant steps towards a sustainable and clean energy future with the establishment of its first green hydrogen plant in an airport. This groundbreaking initiative marks a major milestone in the country’s efforts to reduce carbon emissions and promote renewable energy sources. The green hydrogen plant will not only provide clean energy but also serve as a model for other airports and industries to adopt similar eco-friendly practices. In this article, we will explore the details of India’s first green hydrogen plant, its significance, and its potential impact on the aviation industry.

 

What is Green Hydrogen?

Before diving into the specifics of India’s green hydrogen plant, let’s first understand what green hydrogen is. Hydrogen is considered “green” when it is produced using renewable energy sources such as solar or wind power through a process called electrolysis. During electrolysis, water is split into hydrogen and oxygen, with the hydrogen being captured and stored for later use. Green hydrogen is a versatile and clean energy carrier that can be used in various sectors, including transportation, industry, and power generation.

 

The Need for Green Hydrogen in Aviation

The aviation industry is one of the largest contributors to greenhouse gas emissions, accounting for a significant portion of global carbon dioxide output. As the demand for air travel continues to grow, finding sustainable alternatives to traditional aviation fuels becomes crucial. Green hydrogen offers a promising solution as it can be used to power aircraft, reducing reliance on fossil fuels and mitigating the environmental impact of aviation.

 

India’s First Green Hydrogen Plant at an Airport

India’s first green hydrogen plant is set to be established at an airport, aiming to showcase the feasibility and benefits of using green hydrogen in the aviation sector. The location of the plant at an airport holds strategic importance, as airports are major energy consumers and have a considerable carbon footprint. By integrating a green hydrogen plant within the airport infrastructure, India is taking a significant step towards decarbonizing the aviation industry.

 

Collaboration Between Airport Authorities and Renewable Energy Companies

The establishment of the green hydrogen plant is a result of a collaboration between airport authorities and renewable energy companies. This partnership ensures the expertise and resources required to set up and operate the plant effectively. By leveraging the strengths of both parties, the project aims to demonstrate the viability of green hydrogen as a sustainable energy source for airports and beyond.

 

Production Capacity and Infrastructure

India’s first green hydrogen plant is planned to have a substantial production capacity, generating a significant amount of clean energy. The infrastructure for the plant will include solar or wind power systems for electrolysis, hydrogen storage facilities, and a distribution network. The plant’s design will prioritize efficiency, scalability, and safety, ensuring a seamless integration with the airport’s existing operations.

 

Technological Innovations and Research

The establishment of the green hydrogen plant will also drive technological innovations and research in the field of hydrogen production and utilization. It will serve as a testbed for advanced electrolysis technologies, storage solutions, and hydrogen-based applications. The knowledge and insights gained from operating the plant will contribute to further advancements in green hydrogen technology and its adoption in different sectors.

 

Benefits of India’s First Green Hydrogen Plant

India’s first green hydrogen plant brings several benefits, both environmental and economic. Let’s explore some of these advantages:

1. Carbon Emission Reduction

The primary benefit of the green hydrogen plant is the significant reduction in carbon emissions. By producing hydrogen using renewable energy sources, the plant avoids the release of greenhouse gases into the atmosphere. This not only helps combat climate change but also improves air quality in the surrounding areas.

2. Energy Independence and Security

The production of green hydrogen promotes energy independence and security. By relying on renewable energy sources for hydrogen production, India reduces its dependence on imported fossil fuels. This enhances the country’s energy security and reduces vulnerabilities to price fluctuations and geopolitical tensions relating to fossil fuel supplies.

3. Job Creation and Economic Growth

The establishment of the green hydrogen plant will create employment opportunities and contribute to economic growth. The construction and operation of the plant require skilled labor, creating jobs in the renewable energy sector. Additionally, the plant’s presence will attract investments and foster the development of a green hydrogen ecosystem, further stimulating economic activity.

4. Technological Advancements and Knowledge Sharing

India’s first green hydrogen plant will drive technological advancements and knowledge sharing in the field of renewable energy. As the plant operates, valuable insights and best practices will be gained, which can be shared with other industries and countries. This collaborative approach accelerates the global transition towards a greener and more sustainable future.

5. Implications for the Aviation Industry

India’s first green hydrogen plant has significant implications for the aviation industry. Let’s explore some of these implications:

6. Carbon-Neutral Airports

The integration of green hydrogen plants within airports paves the way for carbon-neutral airports. By utilizing green hydrogen to power airport operations, such as ground vehicles and auxiliary power units, airports can significantly reduce their carbon footprint. This aligns with the International Civil Aviation Organization’s (ICAO) goal of achieving carbon-neutral growth for the aviation industry.

7. Sustainable Aviation Fuels

Green hydrogen can be further processed into synthetic aviation fuels, known as e-fuels. These e-fuels have the potential to replace conventional jet fuels, enabling carbon-neutral or even carbon-negative flights. The establishment of green hydrogen plants at airports provides a localized and sustainable source of e-fuels, reducing dependence on fossil fuels and promoting the adoption of greener aviation practices.

8. Industry Collaboration and Knowledge Exchange

The establishment of India’s first green hydrogen plant encourages collaboration and knowledge exchange within the aviation industry. Airport authorities, airlines, and aviation stakeholders can share their experiences and learnings from incorporating green hydrogen into their operations. This collective effort fosters innovation and accelerates the adoption of sustainable aviation practices worldwide.

 

Conclusion

India’s first green hydrogen plant in an airport marks a significant milestone in the country’s transition towards a sustainable and clean energy future. The establishment of the plant demonstrates India’s commitment to reducing carbon emissions and promoting renewable energy sources in the aviation industry. With its potential to generate clean energy, drive technological advancements, and create economic opportunities, the green hydrogen plant sets a precedent for other airports and industries to follow. As India continues to lead the way in green hydrogen adoption, it paves the path for a greener and more sustainable aviation sector globally.


HGPL_11.jpg

January 28, 2024by Digital Team HGPL0

India, a country known for its commitment to renewable energy, has taken a significant step towards promoting green hydrogen production. The Ministry of New and Renewable Energy (MNRE) recently released an implementation framework to incentivize the production of green hydrogen. With an ambitious target of 200,000 MT annually, this initiative aims to foster the growth of a sustainable and carbon-neutral hydrogen economy in the country. In this article, we will explore the details of the MNRE’s green hydrogen program, the incentives offered, and the potential impact it could have on India’s energy landscape.

 

Understanding the MNRE’s Green Hydrogen Program

The Strategic Interventions for Green Hydrogen Transition (SIGHT) program, initiated by the MNRE, aims to promote the production and supply of green hydrogen at the lowest cost for refineries. This program falls under Mode 2B of the SIGHT program, which has a total outlay of ₹130.5 billion (~$1.57 billion). The incentives provided under this mode will be granted over a period of three years.

To qualify for these incentives, bidders must adhere to the ‘National Green Hydrogen Standard’ set by the MNRE for the production and supply of green hydrogen. The Ministry of Petroleum and Natural Gas (MoPNG) and the Centre for High Technology (CHT) will act as implementing agencies, providing support and carrying out various tasks assigned by the MNRE and MoPNG.

 

Incentives Offered for Green Hydrogen Production

Under the MNRE’s green hydrogen program, the incentives for the production and supply of green hydrogen will be provided in a phased manner. In the first year, the incentive will be ₹50 ($0.48)/kg in the second year and ₹30 (~$0.36)/kg in the third year. However, it’s important to note that these incentives will not be available under two different modes of the SIGHT program.

The incentive payout will be calculated based on the allocated capacity or actual production and supply, whichever is lower. The allocated capacity will remain constant for the duration of the purchase agreement. This ensures stability and predictability for the beneficiaries of the program.

 

Eligibility and Selection Process

To participate in the bidding process and qualify for the incentives, bidders must meet certain eligibility criteria. The net worth of the bidding entity must be equal to or greater than ₹150 million (~$1.8 million) per 1,000 MT per annum of quoted production and supply capacity. Bidders can be a single company, a joint venture, or a consortium of more than one company.

During the bid submission, bidders must also provide an earnest money deposit (EMD) and comply with the provisions related to EMD forfeiture in case of non-compliance with the required documents or performance guarantees. Successful bidders must submit performance bank guarantees (PBGs) or similar instruments upon accepting the award, with potential forfeiture in case of default or delayed commissioning.

 

Role of Implementing Agencies

The Ministry of Petroleum and Natural Gas (MoPNG) and the Centre for High Technology (CHT) have crucial roles as implementing agencies for the green hydrogen program. These agencies are responsible for aggregating demand, calling for bids, and assessing applications for the production and supply of green hydrogen. They also play a key role in issuing acknowledgments and awards to the selected bidders.

Furthermore, the CHT is responsible for inspecting the production plants physically. They may seek assistance from third-party agencies to verify technical parameters. The MNRE or MoPNG may designate accredited labs or third-party certification agencies to ensure the verification process.

 

Program Monitoring and Oversight

To ensure the progress and performance of the green hydrogen production and supply capacities established under the program, a program monitoring committee has been established. Co-chaired by the Secretary of MoPNG and MNRE, this committee includes the Mission Director of the National Green Hydrogen Mission and other experts as members. The committee will assess the progress and performance of the program and provide guidance for its effective implementation.

 

The Potential Impact on India’s Energy Landscape

The MNRE’s initiative to incentivize green hydrogen production has the potential to revolutionize India’s energy landscape. Green hydrogen, produced from renewable energy sources, can serve as a clean and sustainable alternative to fossil fuels. It has diverse applications, including transportation, power generation, and industrial processes, making it a versatile and promising energy carrier.

By promoting the production and use of green hydrogen, India can reduce its dependence on fossil fuels, mitigate greenhouse gas emissions, and enhance energy security. This initiative aligns with the country’s commitment to achieving its renewable energy targets and transitioning towards a low-carbon economy.

 

Conclusion

The MNRE’s implementation framework to incentivize green hydrogen production in India marks a significant step towards building a sustainable and carbon-neutral hydrogen economy. The incentives provided under the program, along with the involvement of implementing agencies and stringent eligibility criteria, ensure the promotion of high-quality green hydrogen production. This initiative not only contributes to India’s renewable energy goals but also paves the way for a cleaner and greener future. As India continues to embrace green hydrogen, it sets an example for other countries to follow in the transition towards a sustainable energy future.


The-Rise-of-Green-Hydrogen-in-India-A-Game-Changer-for-Energy-Transition.png

January 4, 2024by Digital Team HGPL0

Introduction

In a significant move towards achieving sustainable energy goals, the Ministry of New and Renewable Energy in India has launched the National Green Hydrogen Mission. With an ambitious objective to position India as a global hub for the production, usage, and export of green hydrogen and its derivatives, this mission is set to revolutionize the country’s energy landscape. Approved by the Union Cabinet in January 2023, the mission has an impressive budget of Rs. 19,744 crore. This article explores the status of green hydrogen adoption in India, the key initiatives undertaken by various entities, and the expected outcomes of this groundbreaking mission.

 

Current Status of Green Hydrogen Adoption in India

India’s journey towards embracing green hydrogen has already begun. GAIL Limited, a prominent public sector undertaking, has initiated a pioneering project of blending hydrogen in the City Gas Distribution grid. In the state of Madhya Pradesh, 2% by volume of hydrogen is being blended in the CNG network, while 5% by volume is being blended into the PNG network at the City Gas Station of Avantika Gas Limited (AGL), Indore.

Another major player, NTPC Limited, has commenced the blending of green hydrogen up to 8% (vol/vol) in the PNG Network at NTPC Kawas Township in Surat, Gujarat. These initiatives mark significant milestones in the adoption of green hydrogen in India, paving the way for a cleaner and more sustainable energy future.

Several other public sector undertakings (PSUs) have also embarked on various projects to promote the use of green hydrogen. NTPC is leading the way by introducing hydrogen-based fuel-cell electric vehicle (FCEV) buses in Leh and Greater Noida. Meanwhile, Oil India Limited has developed a 60 kW capacity hydrogen fuel cell bus, which combines an electric drive with a fuel cell, offering an innovative solution for sustainable transportation.

Indian Oil, one of the country’s largest oil and gas companies, is actively involved in the production of green hydrogen through different technologies. They are implementing demonstration pilot plants for the production of green hydrogen through water electrolysis using solar power, biomass oxy steam gasification, and CBG reforming. These projects aim to refuel 15 hydrogen fuel cell buses, further promoting the adoption of green hydrogen in the transportation sector.

Additionally, various entities have announced plans to establish production facilities for green hydrogen and green ammonia in India. These initiatives highlight the growing interest and commitment towards transitioning to clean and renewable energy sources.

 

Expected Outcomes of the National Green Hydrogen Mission

While the current adoption of green hydrogen in India is still in its nascent stages, the National Green Hydrogen Mission holds immense potential for transformative outcomes. By 2030, India aims to achieve a green hydrogen production capacity of 5 MMT per annum, significantly reducing the country’s dependence on imported fossil fuels. This achievement is projected to save a cumulative Rs. 1 lakh crore worth of fossil fuel imports by 2030, contributing to both economic and environmental sustainability.

The ambitious targets set by the National Green Hydrogen Mission are expected to attract a total investment of over Rs. 8 lakh crore and create more than 6 lakh jobs. This massive infusion of capital and employment opportunities will not only drive economic growth but also accelerate the energy transition towards a greener future.

Under the Strategic Interventions for Green Hydrogen Transition (SIGHT) scheme, the mission has issued a Request for Selection (RfS) for green hydrogen producers to set up production facilities with a capacity of 450,000 tons in India. This scheme aims to incentivize and support the establishment of green hydrogen production infrastructure, facilitating the growth of the green hydrogen sector in the country.

 

Conclusion

The National Green Hydrogen Mission in India is a bold and visionary step towards achieving energy security, reducing carbon emissions, and fostering sustainable development. With substantial investments, innovative projects, and strategic interventions, India is poised to become a global leader in green hydrogen production, usage, and export.

The ongoing adoption of green hydrogen in the country, demonstrated by projects in the City Gas Distribution grid, fuel-cell electric vehicle buses, and hydrogen fuel cell technology, is just the beginning of a transformative energy revolution. As the National Green Hydrogen Mission progresses, India’s dependence on imported fossil fuels will diminish, leading to substantial cost savings and a significant reduction in carbon emissions.

The expected outcomes of the mission, including a substantial increase in green hydrogen production capacity, job creation, and total investments, highlight the immense potential of this clean energy source. By harnessing the power of green hydrogen, India is paving the way for a sustainable and prosperous future, while reaffirming its commitment to combat climate change and create a greener planet for generations to come.

“The National Green Hydrogen Mission is a game-changer for India’s energy transition, positioning the country as a global hub for green hydrogen production. With significant investments, innovative projects, and strategic interventions, India is at the forefront of the clean energy revolution.” – Union Minister for New & Renewable Energy and Power R. K. Singh

 

 

References

  1. Official Press Release: Ministry of New and Renewable Energy, Government of India.
  2. National Green Hydrogen Mission: Union Cabinet, Government of India.

HGPL_Blog_20.jpg

November 29, 2023by Digital Team HGPL0

Introduction
Green hydrogen, a sustainable and carbon-neutral alternative to traditional hydrogen production methods, is gaining traction worldwide. In a move that could accelerate the development of a green hydrogen ecosystem, the government is reportedly considering mandating the consumption of green hydrogen in sectors such as fertilizer and refining industries. This article explores the potential impacts of such mandates, the current cost challenges, and the expected future viability of green hydrogen. Let’s delve into the details.

The Need for Mandated Green Hydrogen Consumption Obligations
While fiscal incentives like those in the Strategic Interventions for Green Hydrogen Transition (SIGHT) program have encouraged investment in green hydrogen, industry experts believe that mandating consumption obligations (GHCO) in sectors already utilizing hydrogen could further stimulate early adoption. A report by Kotak Institutional Equities suggests that compulsory GHCO for sectors currently producing and consuming traditional grey hydrogen could fast-track investments in the green hydrogen value chain.

Accelerating Investments in the Green Hydrogen Chain
To kickstart the transition to green hydrogen, the government is considering firm GHCO announcements for hard-to-abate sectors such as fertilizer and refining industries. These sectors are significant contributors to greenhouse gas emissions and can benefit greatly from adopting green hydrogen. By specifying a minimum share of green hydrogen consumption, the government aims to create bulk demand and scale up green hydrogen production. In the coming years, other industries such as steel, long-range heavy-duty mobility, energy storage, and shipping will also be encouraged to pilot projects using green hydrogen as a replacement for fossil fuels.

Challenges of Cost Competitiveness
One of the main challenges hindering the widespread adoption of green hydrogen is its current cost compared to grey hydrogen produced from natural gas. Refiners, for example, may not find an immediate advantage in switching to green hydrogen due to its higher cost. Green hydrogen is not yet competitive with grey hydrogen for the production of ammonia-based fertilizers either. However, increased reliance on green hydrogen has the potential to reduce natural gas usage in both the fertilizer and refining sectors. Experts believe that beyond 2030, the costs of green hydrogen are expected to become more competitive, thus expediting the transition.

The Role of the National Green Hydrogen Mission (NGHM)
The National Green Hydrogen Mission (NGHM) plays a crucial role in fostering the growth of green hydrogen in India. Although the final version of the NGHM does not specify consumption obligations for each sector, it emphasizes the creation of bulk demand and the scaling up of green hydrogen production. The NGHM proposes pilot projects for sectors like steel, long-range heavy-duty mobility, energy storage, and shipping to identify operational issues, technology readiness, regulations, implementation methodologies, and infrastructure requirements. The findings from these projects will pave the way for future commercial deployment.

The Trajectory and Decision-Making Process
The Empowered Group, led by the Cabinet Secretary, will determine the year-wise trajectory of the minimum share of green hydrogen consumption. This decision-making process will consider factors such as the availability of resources for green hydrogen production, relative costs, and other relevant considerations. By carefully planning the trajectory, the government aims to ensure a smooth transition to green hydrogen while optimizing resources and addressing any challenges that may arise.

Emission Norms and Accreditation
To maintain the integrity of green hydrogen, the government has already notified the green hydrogen standard, which defines emission norms for hydrogen to be classified as green. These standards require emissions throughout the production process to remain below two kg of CO2 equivalent per kg of hydrogen produced as a 12-month average. The Bureau of Energy Efficiency (BEE) has been designated as the nodal authority for accrediting agencies responsible for monitoring, verification, and certification of green hydrogen production projects.

Industry Response and Investments
Despite the slow pace of progress, several corporations, including Reliance, have already embraced green hydrogen and announced investment plans. As the industry gains momentum, investment in green hydrogen is expected to increase significantly. The government’s move towards mandates for green hydrogen consumption is likely to attract further investments, creating new opportunities and driving economic growth.

Conclusion: A Green Hydrogen Revolution
The government’s potential announcement of mandates for green hydrogen consumption in key sectors marks a significant step towards building a sustainable and carbon-neutral future. While cost competitiveness remains a challenge, the transition to green hydrogen offers immense potential for reducing greenhouse gas emissions and curbing reliance on traditional energy sources. As the National Green Hydrogen Mission unfolds, pilot projects and technological advancements will drive the commercial deployment of green hydrogen, unlocking a new era of clean energy.
For more information about the latest developments in the green hydrogen industry and the government’s initiatives, stay tuned to our blog for regular updates.

 

Additional Information: Green Hydrogen is expected to revolutionize the energy sector by providing a sustainable alternative to fossil fuels. With its potential to decarbonize various industries and reduce greenhouse gas emissions, green hydrogen has gained significant attention globally. India’s push towards mandating green hydrogen consumption obligations underscores its commitment to sustainable development and combating climate change. By embracing green hydrogen, India can position itself as a leader in the clean energy transition while reaping the economic benefits of investments and job creation.


HGPL_Blog_18.jpg

November 29, 2023by Digital Team HGPL0

The world is rapidly embracing renewable energy sources to combat climate change and transition towards a sustainable future. In this endeavor, green hydrogen has emerged as a promising solution. India, recognizing the immense potential of green hydrogen, has launched the National Green Hydrogen Mission (NGHM) to drive the adoption and production of this clean energy source. This article explores the key aspects of India’s NGHM, including its objectives, proposed mandates, and the potential impact on various sectors.

1. Introduction to India’s National Green Hydrogen Mission
India’s NGHM aims to establish India as a global leader in green hydrogen production and utilization. The mission focuses on leveraging the vast renewable energy resources available in the country to produce green hydrogen through electrolysis, a process that uses electricity from renewable sources to split water molecules into hydrogen and oxygen. By promoting the adoption of green hydrogen across diverse sectors, the mission seeks to reduce carbon emissions, enhance energy security, and drive economic growth.

2. Objectives of the National Green Hydrogen Mission
The NGHM sets forth several objectives to guide the implementation of the mission. These objectives include:
• Promoting Green Hydrogen Production: The mission aims to facilitate the large-scale production of green hydrogen by establishing dedicated hydrogen production plants powered by renewable energy sources.
• Creating Demand for Green Hydrogen: To encourage the uptake of green hydrogen, the mission proposes mandatory consumption obligations for sectors such as fertilizer and refining industries, which are already significant hydrogen consumers.
• Enabling Technology Development: The NGHM emphasizes the need for innovation and technology development in the green hydrogen sector. It encourages research and development activities to improve the efficiency and cost-effectiveness of electrolysis technologies.
• Building Infrastructure: The mission recognizes the importance of developing a robust infrastructure to support the production, storage, and distribution of green hydrogen. It aims to establish hydrogen hubs, storage facilities, and a network of hydrogen refueling stations.
• Facilitating International Cooperation: The NGHM seeks to foster collaboration with international partners to leverage global best practices, attract investments, and facilitate knowledge exchange in the green hydrogen domain.

3. Mandates for Green Hydrogen Consumption
To accelerate the adoption of green hydrogen, the NGHM proposes the introduction of mandatory consumption obligations (GHCO) for sectors that are already utilizing hydrogen, albeit in the form of grey hydrogen. The initial focus is on sectors such as fertilizer and refining, which have significant hydrogen consumption.
The introduction of GHCO would complement existing fiscal incentives provided under initiatives like Strategic Interventions for Green Hydrogen Transition (SIGHT). These mandates would not only drive investments in the green hydrogen value chain but also encourage the transition from grey hydrogen to green hydrogen.

4. Implications for Hard-to-Abate Sectors
While the shift to green hydrogen offers environmental benefits by reducing carbon emissions, certain sectors, such as refineries, may face cost challenges due to the higher cost of green hydrogen compared to grey hydrogen. However, increased reliance on green hydrogen has the potential to curb natural gas usage in industries like fertilizer and refining.
Although green hydrogen is currently more expensive than grey hydrogen, it is projected to become cost-competitive post-2030. The NGHM’s focus on creating bulk demand and scaling up green hydrogen production is expected to drive down costs, making it a viable alternative to fossil fuel-based hydrogen.

5. Sector-Wise Adoption of Green Hydrogen
The NGHM envisions the adoption of green hydrogen across various sectors, including:
5.1 Fertilizer Industry
The fertilizer industry is a significant consumer of hydrogen, primarily for the production of ammonia-based fertilizers. The NGHM proposes pilot projects to explore the use of green hydrogen or its derivatives, such as green ammonia, as an energy feedstock in the fertilizer manufacturing process.
These pilot projects will provide insights into operational challenges, technology readiness, and infrastructure requirements. The knowledge gained from these projects will pave the way for the commercial deployment of green hydrogen in the fertilizer industry.
5.2 Refining Industry
Similar to the fertilizer sector, the refining industry relies on hydrogen for various processes. The NGHM aims to establish consumption obligations for the refining sector, promoting the use of green hydrogen as a cleaner alternative to grey hydrogen.
While the higher cost of green hydrogen poses a challenge to the refining industry, the transition to green hydrogen is expected to accelerate as costs decrease and the industry seeks to reduce its carbon footprint.
5.3 Steel Industry
The steel industry is one of the largest contributors to global carbon emissions. The NGHM proposes pilot projects to explore the feasibility of using green hydrogen as a replacement for fossil fuels in steel production.
By leveraging green hydrogen in steel manufacturing processes, the industry can significantly reduce its carbon emissions and move closer to achieving its sustainability goals.
5.4 Long-Range Heavy-Duty Mobility
The NGHM recognizes the potential of green hydrogen in decarbonizing long-range heavy-duty mobility, such as trucks and buses. Pilot projects will be undertaken to assess the viability of using green hydrogen as a fuel source for these vehicles, replacing conventional fossil fuels.
These pilot projects will provide valuable insights into the operational aspects, infrastructure requirements, and regulatory framework for the widespread adoption of green hydrogen in the transportation sector.
5.5 Energy Storage and Shipping
Green hydrogen has promising applications in energy storage and shipping. The NGHM proposes pilot projects to evaluate the use of green hydrogen as a storage medium for renewable energy and as a fuel source for shipping vessels.
These projects will help identify any operational challenges, regulatory gaps, and technology limitations, enabling the development of strategies for scaling up green hydrogen adoption in these sectors.

6. Implementation and Governance
The NGHM outlines a comprehensive implementation and governance framework to ensure the successful execution of the mission. The key elements of this framework include:
• Empowered Group: An Empowered Group, headed by the Cabinet Secretary, will be responsible for setting the year-wise trajectory of the minimum share of green hydrogen consumption. This trajectory will consider factors such as resource availability, relative costs, and other relevant considerations.
• Technology Development and Deployment: The NGHM emphasizes the importance of technology development and deployment through collaboration between industry, academia, and research institutions. This collaboration will drive innovation and facilitate the adoption of advanced electrolysis technologies.
• Infrastructure Development: The mission recognizes the critical role of infrastructure in supporting the production, storage, and distribution of green hydrogen. It aims to establish hydrogen hubs, storage facilities, and a network of refueling stations to create an ecosystem conducive to the widespread adoption of green hydrogen.
• Monitoring and Certification: The Bureau of Energy Efficiency (BEE) will serve as the nodal authority for accrediting agencies responsible for monitoring, verification, and certification of green hydrogen production projects. These certifications will ensure compliance with emission norms and quality standards.

7. Financing and Incentives
To attract investments and facilitate the growth of the green hydrogen sector, the NGHM proposes a range of financing mechanisms and incentives. These include:
• Green Hydrogen Fund: The government plans to establish a dedicated fund to provide financial assistance for green hydrogen projects. This fund will support research and development activities, technology adoption, and infrastructure development.
• Fiscal Incentives: In addition to the Green Hydrogen Fund, the government will provide fiscal incentives such as tax benefits, grants, and subsidies to promote investments in the green hydrogen value chain. These incentives will help reduce the cost barrier and create a favorable investment environment.
• International Collaboration: The NGHM encourages collaboration with international partners to attract foreign direct investment and leverage global expertise in green hydrogen technologies. Bilateral and multilateral partnerships will be forged to facilitate knowledge exchange and capacity building.
• Public-Private Partnerships: The mission emphasizes the importance of public-private partnerships in driving the transition to a green hydrogen economy. Collaborations between government entities, private companies, and research institutions will expedite technology deployment and create synergies for sustainable growth.

8. Environmental Benefits of Green Hydrogen
Green hydrogen offers several environmental benefits compared to conventional fossil fuels. These benefits include:
• Reduced Carbon Emissions: Green hydrogen is produced using renewable energy sources, resulting in minimal or zero carbon emissions during its production and utilization. By replacing fossil fuels with green hydrogen, sectors like transportation, power generation, and industries can significantly reduce their carbon footprint.
• Air Quality Improvement: The use of green hydrogen as a fuel source in transportation can help address air pollution concerns. Hydrogen fuel cells produce only water vapor as a byproduct, eliminating harmful emissions such as particulate matter, nitrogen oxides, and sulfur dioxide.
• Renewable Energy Integration: Green hydrogen can serve as a means to store and utilize excess renewable energy generated during periods of low demand. By utilizing green hydrogen as an energy storage medium, intermittent renewable energy sources can be effectively integrated into the grid, ensuring a stable and reliable power supply.
• Energy Security: Green hydrogen production reduces dependency on fossil fuel imports, enhancing energy security by utilizing indigenous renewable energy resources. This reduces vulnerability to price fluctuations and geopolitical risks associated with fossil fuel imports.

9. Challenges and the Way Forward
The adoption and scale-up of green hydrogen face certain challenges that need to be addressed for successful implementation. These challenges include:
• Cost Competitiveness: Green hydrogen is currently more expensive than grey hydrogen produced from fossil fuels. Lowering the production costs through technological advancements, economies of scale, and supportive policies will be crucial to achieving cost competitiveness.
• Infrastructure Development: Establishing a robust infrastructure for green hydrogen production, storage, and distribution is essential for its widespread adoption. Investments in hydrogen hubs, storage facilities, and refueling stations need to be prioritized to facilitate the growth of the green hydrogen ecosystem.
• Technology Readiness: The deployment of advanced electrolysis technologies and associated infrastructure requires further development and testing. Collaboration between industry and research institutions is vital to accelerate technology readiness and address technological challenges.
• Regulatory Framework: A comprehensive regulatory framework encompassing safety standards, emission norms, and quality certifications is necessary to ensure the smooth transition to green hydrogen. Clear guidelines and standards will provide a conducive environment for investment and growth.
• Public Awareness and Acceptance: Raising public awareness about the benefits of green hydrogen and fostering acceptance among stakeholders is crucial. Educational campaigns, engagement with local communities, and collaboration with industry associations will help build a positive perception of green hydrogen.

10. International Collaboration and Future Prospects
India’s NGHM recognizes the importance of international collaboration in driving the green hydrogen transition. The mission aims to collaborate with global partners to leverage best practices, share knowledge, and attract investments in green hydrogen projects.
The successful implementation of the NGHM will not only contribute to India’s sustainable development goals but also position the country as a global leader in the green hydrogen domain. It will open up opportunities for export of green hydrogen and related technologies, fostering economic growth and job creation.

11. Conclusion
India’s National Green Hydrogen Mission is a testament to the country’s commitment to a sustainable and low-carbon future. By promoting the adoption and production of green hydrogen, the mission aims to mitigate climate change, reduce dependency on fossil fuels, and drive economic growth. The mandates for green hydrogen consumption in sectors such as fertilizers and refining, along with the proposed pilot projects, will pave the way for a smooth transition to a green hydrogen economy. With the right policies, investments, and collaborative efforts, India has the potential to become a global leader in green hydrogen production and utilization.

Disclaimer: The information provided in this article is based on the referenced sources and is intended for informational purposes only. The views and opinions expressed in this article are those of the author and do not necessarily reflect the official policy or position of any agency or organization.


HGPL_Blog_042.jpg

November 17, 2023by Digital Team HGPL0

India is on the cusp of a green revolution, and one area that holds great promise is the development of a robust green hydrogen ecosystem. The government is considering introducing mandates for green hydrogen consumption in sectors such as fertilizers and refining, which could accelerate investments and drive early adoption. While green hydrogen is currently more expensive than grey hydrogen, the shift to green hydrogen could significantly reduce carbon emissions and lead to a more sustainable future.

 

The Potential of Green Hydrogen

Green hydrogen, produced through the electrolysis of water using renewable energy sources, has gained significant attention as a clean and sustainable alternative to grey hydrogen. Grey hydrogen is produced from fossil fuels, contributing to greenhouse gas emissions and climate change. By transitioning to green hydrogen, India can reduce its reliance on fossil fuels and make substantial progress towards its climate goals.

 

Compulsory Green Hydrogen Consumption Obligations

To encourage the adoption of green hydrogen, the government is considering introducing compulsory green hydrogen consumption obligations (GHCO) for sectors that are already producing and consuming hydrogen. These obligations would initially target hard-to-abate sectors such as fertilizers and refining, with plans to expand to other industries in the coming years. The introduction of GHCO, in addition to existing fiscal incentives, would create a strong market demand for green hydrogen and drive investments in the entire value chain.

 

Overcoming Cost Challenges

While the cost of green hydrogen is currently higher than grey hydrogen, experts predict that it will become more competitive post-2030. The initial higher cost is attributed to the nascent stage of green hydrogen production and the scale of renewable energy infrastructure required. However, as technology advances and economies of scale are achieved, the cost of green hydrogen is expected to decrease, making it a more viable option for industries.

 

Green Hydrogen Mandate in Hard-to-Abate Sectors

The National Green Hydrogen Mission (NGHM) aims to create a roadmap for the adoption and deployment of green hydrogen across various sectors. While the final version of NGHM does not specify consumption obligations for each sector, it emphasizes the need to create bulk demand and scale up green hydrogen production. To achieve this, the government will specify a minimum share of green hydrogen consumption for consumers as an energy feedstock.

 

Fertilizer and Refining Sectors Leading the Way

The fertilizer and refining sectors are among the largest consumers of hydrogen in India. While they currently rely on grey hydrogen, the introduction of a green hydrogen mandate could significantly reduce their carbon footprint. Pilot projects are already underway to explore the feasibility of using green hydrogen or its derivatives like green ammonia or methanol in these sectors. These projects will help identify operational challenges, technology readiness, and infrastructure requirements, paving the way for future commercial deployment.

 

Steel, Mobility, Energy Storage, and Shipping Sectors

Apart from fertilizers and refining, other sectors such as steel, long-range heavy-duty mobility, energy storage, and shipping also have the potential to benefit from green hydrogen adoption. NGHM proposes pilot projects in these sectors to assess the feasibility of replacing fossil fuels with green hydrogen or its derivatives. These projects will provide valuable insights into technology, regulations, and supply chain requirements, enabling a smooth transition to a greener future.

 

Government Initiatives and Standards

The Indian government has taken significant steps to support the development of a green hydrogen ecosystem. In August this year, it notified the green hydrogen standard, which defines emission norms for hydrogen to be termed green. The standards ensure that the emissions associated with the entire hydrogen production process, from well-to-gate, stay below two kg of CO2 equivalent per kg of hydrogen produced as a 12-month average.

 

Accreditation and Certification

To ensure compliance with the green hydrogen standard, the Bureau of Energy Efficiency (BEE) will accredit agencies for monitoring, verification, and certification of green hydrogen production projects. This accreditation will provide transparency and credibility to the green hydrogen ecosystem, boosting investor confidence and encouraging further investments.

 

Corporate Investments in Green Hydrogen

Leading corporations in India, including Reliance, have already made significant investments in the green hydrogen space. While progress has been relatively slow, experts believe that green hydrogen will be an emerging area for investment. As more companies recognize the environmental and economic benefits of green hydrogen, we can expect to see an increase in investments and collaborations in this sector.

 

Conclusion

India has a unique opportunity to lead the way in the global shift towards a green hydrogen economy. By introducing compulsory green hydrogen consumption obligations and supporting pilot projects in various sectors, the government can accelerate investments and drive early adoption. While cost challenges remain, advancements in technology and economies of scale are expected to make green hydrogen a competitive and sustainable alternative to grey hydrogen. With the right policies and incentives, India can unlock the full potential of green hydrogen and pave the way for a greener and more sustainable future.

Additional Information: Green Hydrogen is a versatile energy carrier that can be used in various sectors, including power generation, transportation, and industrial applications. Its production does not emit greenhouse gases, making it a key solution for decarbonizing the economy. Green Hydrogen can be produced through various methods, including water electrolysis using renewable energy sources such as solar and wind power.


India-and-Saudi-Arabia-Collaborate-for-Grid-and-Green-Hydrogen.jpeg

October 22, 2023by Digital Team HGPL0

Introduction

India and Saudi Arabia have recently signed a memorandum of understanding (MoU) to strengthen cooperation in the areas of grid interconnection and green hydrogen. The MoU was signed by Union Minister for Power and New & Renewable Energy, RK Singh, and Saudi Minister of Energy, Abdulaziz bin Salman Al-Saud, in Riyadh, Saudi Arabia. This collaboration marks an important step towards achieving a sustainable and resilient energy future for both countries.

 

Memorandum of Understanding

The MoU aims to establish a general framework for cooperation between India and Saudi Arabia in the field of electrical interconnection, exchange of electricity during peak times and emergencies, co-development of projects, co-production of green and clean hydrogen, and establishing secure and reliable supply chains for materials used in the renewable energy sector.

 

Objectives of the MoU

The primary objective of the MoU is to enhance collaboration between India and Saudi Arabia in the energy sector. By sharing expertise and resources, both countries can accelerate their transition to a low-carbon economy and achieve their respective climate goals. The MoU also promotes the development of sustainable and resilient energy infrastructure, which is crucial for ensuring energy security and meeting the growing energy demands of both nations.

 

Grid Interconnection and Exchange of Electricity

One of the key areas of collaboration under the MoU is grid interconnection and the exchange of electricity. India has been exploring the possibility of interconnecting its national power grid with those of Saudi Arabia, the UAE, and Singapore through subsea cables. This interconnection would allow the sharing of power resources across regions, reducing the need for costly energy storage solutions and improving the reliability of the power grids.

 

Co-development of Projects and Secure Supply Chains

The MoU also emphasizes the co-development of projects related to renewable energy and green hydrogen production. Both countries will work together to identify and implement joint projects that promote the use of clean and sustainable energy sources. Additionally, the MoU aims to establish secure, reliable, and resilient supply chains for materials used in the production of green hydrogen and renewable energy, ensuring the availability of critical resources for the successful implementation of these projects.

 

India’s Pursuit of Grid Interconnectivity

India has been actively pursuing the goal of grid interconnectivity with other countries as part of its One Sun One World One Grid (OSOWOG) plan. This ambitious initiative aims to connect countries through a global power grid, enabling the sharing of clean and renewable energy resources on a massive scale. By interconnecting its power grid with neighboring countries, India can enhance energy security, optimize resource utilization, and facilitate the integration of higher shares of renewable energy into the grid.

 

Global Power Grid Initiative

The global power grid initiative, proposed by India, has gained significant traction in recent years. Several countries have expressed interest in joining this initiative, recognizing the potential benefits of a connected and integrated global power system. Through this initiative, countries can collaborate on the development of cross-border transmission infrastructure, harmonize technical standards, and facilitate the seamless exchange of clean energy across borders. The collaboration between India and Saudi Arabia is a significant step towards realizing the vision of a global power grid.

 

India’s Leadership in Energy Transition

India has emerged as a global leader in energy transition, with ambitious targets for reducing carbon emissions and increasing the share of renewable energy in its energy mix. The country aims to reduce the emission intensity of its GDP by 45% by 2030 and achieve net-zero emissions by 2070. By collaborating with countries like Saudi Arabia, India can leverage its expertise in renewable energy deployment, grid integration, and energy storage to accelerate the global transition towards a sustainable and low-carbon future.

 

Conclusion

The collaboration between India and Saudi Arabia in the areas of grid interconnection and green hydrogen holds great promise for advancing the clean energy transition. By harnessing their respective strengths and resources, both countries can unlock new opportunities for sustainable economic growth, enhance energy security, and contribute to global efforts to mitigate climate change. The MoU signed between India and Saudi Arabia is a testament to their shared commitment to building a greener and more sustainable future.


HGPL_Blog_181.jpg

September 30, 2023by Digital Team HGPL0

Introduction

ACME Group, a well-known diversified renewable energy company, has set its sights on revolutionizing the hydrogen industry in India. In a significant development, the company has signed an agreement with Tata Steel Special Economic Zone Limited (TSSEZL) to establish a 1.3 million tonnes per annum (MTPA) green ammonia production facility at the Gopalpur Industrial Park (GIP) in Odisha. This ambitious project is poised to become the largest single-location green hydrogen and its derivatives manufacturing facility in the country.

The Partnership with TSSEZL and IHI Corporation

ACME Group’s partnership with TSSEZL, a subsidiary of Tata Steel, is a strategic move that will provide the necessary infrastructure and support for the green ammonia project. The agreement was signed between Manikanta Naik, Managing Director of TSSEZL, and Sandeep Kashyap, Chief Operating Officer of ACME Group, in the presence of Hemant Sharma, Principal Secretary of Industries Department and Chairman of IDCO & IPICOL, Government of Odisha.

As part of this project, ACME Group plans to collaborate with Japan’s IHI Corporation, a global leader in engineering, procurement, and construction (EPC) services. The expertise of IHI Corporation in the hydrogen sector will play a crucial role in ensuring the success of the green ammonia production facility. This partnership will further strengthen the ties between India and Japan in the field of clean energy.

The Green Ammonia Production Facility

ACME Group’s green ammonia production facility at GIP will have a capacity of nearly 1.3 MTPA. The production of green ammonia will be based on the utilization of green hydrogen, which will be produced using renewable power sources. This approach ensures that the entire production process is environmentally friendly and aligns with the principles of sustainable development.

The Gopalpur Industrial Park, located in Ganjam District of Odisha, provides a strategic advantage for this project. The existing port facilities at Gopalpur will enable the export of the green ammonia to both Western and Eastern markets. This will position ACME Group as a key player in the global green hydrogen and ammonia market, offering competitive prices and contributing to India’s vision of becoming a global hub for green hydrogen and its derivatives.

Government Support and the Make in India Initiative

ACME Group’s green hydrogen and green ammonia project has received significant support from the Government of Odisha. The Hon’ble Chief Minister of Odisha, Shri Naveen Patnaik, and the Department of Industries, Govt of Odisha, have played instrumental roles in extending their support to this project. The proactive approach of the state government and its commitment to green energy have created a conducive environment for the establishment of such a groundbreaking facility.

The project also aligns with the Make in India initiative, spearheaded by the Hon’ble Union Minister for Power, New and Renewable Energy, Shri R K Singh, and the Ministry of New and Renewable Energy. This initiative aims to promote domestic manufacturing and position India as a global manufacturing hub. ACME Group’s green hydrogen and green ammonia project will contribute significantly to this vision by offering Make in India products to both domestic and international markets.

Odisha’s Vision for Green Hydrogen and Green Ammonia

The Government of Odisha envisions the state as a leader in the green fuel economy, with a particular focus on green hydrogen and green ammonia. Hemant Sharma, Principal Secretary of Industries Department and Chairman of IDCO & IPICOL, Government of Odisha, expressed this vision and reaffirmed the state’s commitment to sustainable and prosperous development. Odisha’s progressive policies, attractive incentives, and industry-friendly environment have positioned it as an ideal destination for investments in the green energy sector.

The Emerging Manufacturing Hub at Gopalpur Industrial Park

Tata Steel Special Economic Zone Limited’s Gopalpur Industrial Park (GIP) has emerged as a preferred investment destination in a short span of time. With plug-and-play infrastructure, multi-modal logistics connectivity, ready environmental clearance, and clear land titles, GIP offers a conducive environment for businesses to thrive. The industrial park has already attracted significant investments, amounting to around Rs. 4,000 crore, and is poised for further growth with ACME Group’s green ammonia production facility.

Conclusion

ACME Group’s ambitious plan to establish a 1.3 MTPA green ammonia production facility in Odisha marks a significant milestone in India’s journey towards a sustainable and green future. This project, in partnership with TSSEZL and IHI Corporation, will not only position ACME Group as a key player in the green hydrogen and ammonia market but also contribute to India’s goal of becoming a global hub for green hydrogen and its derivatives.

With the support of the Government of Odisha and its commitment to green energy, this project will pave the way for a green fuel revolution in India. The establishment of the green ammonia production facility at Gopalpur Industrial Park will create new opportunities for employment, boost the economy, and enhance India’s standing in the global clean energy landscape. ACME Group’s vision and efforts reflect their commitment to sustainable development and a cleaner, greener future for all.